Flow-Xl: a new facility for the analysis of crystallization in flow systems.

IF 6.1 3区 材料科学 Q1 Biochemistry, Genetics and Molecular Biology Journal of Applied Crystallography Pub Date : 2024-08-19 eCollection Date: 2024-10-01 DOI:10.1107/S1600576724006113
T D Turner, C O'Shaughnessy, X He, M A Levenstein, L Hunter, J Wojciechowski, H Bristowe, R Stone, C C Wilson, A Florence, K Robertson, N Kapur, F C Meldrum
{"title":"Flow-Xl: a new facility for the analysis of crystallization in flow systems.","authors":"T D Turner, C O'Shaughnessy, X He, M A Levenstein, L Hunter, J Wojciechowski, H Bristowe, R Stone, C C Wilson, A Florence, K Robertson, N Kapur, F C Meldrum","doi":"10.1107/S1600576724006113","DOIUrl":null,"url":null,"abstract":"<p><p>Characterization of crystallization processes <i>in situ</i> is of great importance to furthering knowledge of how nucleation and growth processes direct the assembly of organic and inorganic materials in solution and, critically, understanding the influence that these processes have on the final physico-chemical properties of the resulting solid form. With careful specification and design, as demonstrated here, it is now possible to bring combined X-ray diffraction and Raman spectroscopy, coupled to a range of fully integrated segmented and continuous flow platforms, to the laboratory environment for <i>in situ</i> data acquisition for timescales of the order of seconds. The facility used here (Flow-Xl) houses a diffractometer with a micro-focus Cu <i>K</i>α rotating anode X-ray source and a 2D hybrid photon-counting detector, together with a Raman spectrometer with 532 and 785 nm lasers. An overview of the diffractometer and spectrometer setup is given, and current sample environments for flow crystallization are described. Commissioning experiments highlight the sensitivity of the two instruments for time-resolved <i>in situ</i> data collection of samples in flow. Finally, an example case study to monitor the batch crystallization of sodium sulfate from aqueous solution, by tracking both the solute and solution phase species as a function of time, highlights the applicability of such measurements in determining the kinetics associated with crystallization processes. This work illustrates that the Flow-Xl facility provides high-resolution time-resolved <i>in situ</i> structural phase information through diffraction data together with molecular-scale solution data through spectroscopy, which allows crystallization mechanisms and their associated kinetics to be analysed in a laboratory setting.</p>","PeriodicalId":14950,"journal":{"name":"Journal of Applied Crystallography","volume":null,"pages":null},"PeriodicalIF":6.1000,"publicationDate":"2024-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11460381/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Crystallography","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1107/S1600576724006113","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 0

Abstract

Characterization of crystallization processes in situ is of great importance to furthering knowledge of how nucleation and growth processes direct the assembly of organic and inorganic materials in solution and, critically, understanding the influence that these processes have on the final physico-chemical properties of the resulting solid form. With careful specification and design, as demonstrated here, it is now possible to bring combined X-ray diffraction and Raman spectroscopy, coupled to a range of fully integrated segmented and continuous flow platforms, to the laboratory environment for in situ data acquisition for timescales of the order of seconds. The facility used here (Flow-Xl) houses a diffractometer with a micro-focus Cu Kα rotating anode X-ray source and a 2D hybrid photon-counting detector, together with a Raman spectrometer with 532 and 785 nm lasers. An overview of the diffractometer and spectrometer setup is given, and current sample environments for flow crystallization are described. Commissioning experiments highlight the sensitivity of the two instruments for time-resolved in situ data collection of samples in flow. Finally, an example case study to monitor the batch crystallization of sodium sulfate from aqueous solution, by tracking both the solute and solution phase species as a function of time, highlights the applicability of such measurements in determining the kinetics associated with crystallization processes. This work illustrates that the Flow-Xl facility provides high-resolution time-resolved in situ structural phase information through diffraction data together with molecular-scale solution data through spectroscopy, which allows crystallization mechanisms and their associated kinetics to be analysed in a laboratory setting.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Flow-Xl:用于分析流动系统结晶的新设备。
原位结晶过程的表征对于进一步了解成核和生长过程如何指导溶液中有机和无机材料的组装,以及对于了解这些过程对所形成的固体形式的最终物理化学性质的影响至关重要。正如本文所展示的,通过精心的规范和设计,现在可以将 X 射线衍射和拉曼光谱结合到一系列完全集成的分段和连续流动平台上,在实验室环境中以秒为单位进行现场数据采集。这里使用的设备(Flow-Xl)包括一台配有微焦点 Cu Kα 旋转阳极 X 射线源和二维混合光子计数探测器的衍射仪,以及一台配有 532 和 785 纳米激光器的拉曼光谱仪。报告概述了衍射仪和光谱仪的设置,并介绍了当前用于流动结晶的样品环境。调试实验强调了两台仪器在流动样品的时间分辨原位数据收集方面的灵敏度。最后,通过对溶质和溶液相物种随时间变化的跟踪,介绍了监测水溶液中硫酸钠批量结晶的案例研究,强调了此类测量在确定结晶过程相关动力学方面的适用性。这项工作表明,Flow-Xl 设备可通过衍射数据提供高分辨率的时间分辨原位结构相信息,并通过光谱学提供分子尺度的溶液数据,从而可在实验室环境中分析结晶机制及其相关动力学。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
10.00
自引率
3.30%
发文量
178
审稿时长
4.7 months
期刊介绍: Many research topics in condensed matter research, materials science and the life sciences make use of crystallographic methods to study crystalline and non-crystalline matter with neutrons, X-rays and electrons. Articles published in the Journal of Applied Crystallography focus on these methods and their use in identifying structural and diffusion-controlled phase transformations, structure-property relationships, structural changes of defects, interfaces and surfaces, etc. Developments of instrumentation and crystallographic apparatus, theory and interpretation, numerical analysis and other related subjects are also covered. The journal is the primary place where crystallographic computer program information is published.
期刊最新文献
SUBGROUPS: a computer tool at the Bilbao Crystallographic Server for the study of pseudo-symmetric or distorted structures. Characterization of sub-micrometre-sized voids in fixed human brain tissue using scanning X-ray microdiffraction. Electronic angle focusing for neutron time-of-flight powder diffractometers. Link between b.c.c.-f.c.c. orientation relationship and austenite morphology in CF8M stainless steel. In situ counter-diffusion crystallization and long-term crystal preservation in microfluidic fixed targets for serial crystallography.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1