Revealing nanoscale sorption mechanisms of gases in a highly porous silica aerogel.

IF 6.1 3区 材料科学 Q1 Biochemistry, Genetics and Molecular Biology Journal of Applied Crystallography Pub Date : 2024-08-19 eCollection Date: 2024-10-01 DOI:10.1107/S1600576724006794
Phung Nhu Hao Vu, Andrzej P Radlinski, Tomasz Blach, Ralf Schweins, Hartmut Lemmel, John Daniels, Klaus Regenauer-Lieb
{"title":"Revealing nanoscale sorption mechanisms of gases in a highly porous silica aerogel.","authors":"Phung Nhu Hao Vu, Andrzej P Radlinski, Tomasz Blach, Ralf Schweins, Hartmut Lemmel, John Daniels, Klaus Regenauer-Lieb","doi":"10.1107/S1600576724006794","DOIUrl":null,"url":null,"abstract":"<p><p>Geological formations provide a promising environment for the long-term and short-term storage of gases, including carbon dioxide, hydrogen and hydro-carbons, controlled by the rock-specific small-scale pore structure. This study investigates the nanoscale structure and gas uptake in a highly porous silica aerogel (a synthetic proxy for natural rocks) using transmission electron microscopy, X-ray diffraction, and small-angle and ultra-small-angle neutron scattering with a tracer of deuterated methane (CD<sub>4</sub>) at pressures up to 1000 bar. The results show that the adsorption of CD<sub>4</sub> in the porous silica matrix is scale dependent. The pore space of the silica aerogel is fully accessible to the invading gas, which quickly equilibrates with the external pressure and shows no condensation on the sub-nanometre scale. In the 2.5-50 nm pore size region a classical two-phase adsorption behaviour is observed. The structure of the aerogel returns to its original state after the CD<sub>4</sub> pressure has been released.</p>","PeriodicalId":14950,"journal":{"name":"Journal of Applied Crystallography","volume":"57 Pt 5","pages":"1311-1322"},"PeriodicalIF":6.1000,"publicationDate":"2024-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11460400/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Crystallography","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1107/S1600576724006794","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 0

Abstract

Geological formations provide a promising environment for the long-term and short-term storage of gases, including carbon dioxide, hydrogen and hydro-carbons, controlled by the rock-specific small-scale pore structure. This study investigates the nanoscale structure and gas uptake in a highly porous silica aerogel (a synthetic proxy for natural rocks) using transmission electron microscopy, X-ray diffraction, and small-angle and ultra-small-angle neutron scattering with a tracer of deuterated methane (CD4) at pressures up to 1000 bar. The results show that the adsorption of CD4 in the porous silica matrix is scale dependent. The pore space of the silica aerogel is fully accessible to the invading gas, which quickly equilibrates with the external pressure and shows no condensation on the sub-nanometre scale. In the 2.5-50 nm pore size region a classical two-phase adsorption behaviour is observed. The structure of the aerogel returns to its original state after the CD4 pressure has been released.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
揭示高多孔二氧化硅气凝胶中气体的纳米级吸附机制。
地质构造为气体(包括二氧化碳、氢气和碳氢化合物)的长期和短期储存提供了良好的环境,这种环境由岩石特有的小尺度孔隙结构控制。本研究利用透射电子显微镜、X 射线衍射以及小角和超小角中子散射,在压力高达 1000 巴的条件下,以氚代甲烷(CD4)为示踪剂,研究了高孔隙二氧化硅气凝胶(天然岩石的合成替代物)的纳米级结构和气体吸收情况。结果表明,CD4 在多孔二氧化硅基质中的吸附与尺度有关。侵入的气体可以完全进入二氧化硅气凝胶的孔隙空间,并迅速与外部压力达到平衡,在亚纳米尺度上不会出现冷凝现象。在孔径为 2.5-50 纳米的区域,可以观察到典型的两相吸附行为。CD4 压力释放后,气凝胶的结构又恢复到原来的状态。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
10.00
自引率
3.30%
发文量
178
审稿时长
4.7 months
期刊介绍: Many research topics in condensed matter research, materials science and the life sciences make use of crystallographic methods to study crystalline and non-crystalline matter with neutrons, X-rays and electrons. Articles published in the Journal of Applied Crystallography focus on these methods and their use in identifying structural and diffusion-controlled phase transformations, structure-property relationships, structural changes of defects, interfaces and surfaces, etc. Developments of instrumentation and crystallographic apparatus, theory and interpretation, numerical analysis and other related subjects are also covered. The journal is the primary place where crystallographic computer program information is published.
期刊最新文献
Thermal diffuse scattering analysis of Ag2O binary system via X-ray powder diffraction. Top dusted adhesive tape sample preparation method for the X-ray diffraction analysis of small powder sample volumes with the Bragg-Brentano setup. Journal of Applied Crystallography welcomes eight new Co-editors. A new technical solution to the problem of increasing the resolution of X-ray diffraction methods. An extended thermal pressure equation of state for sodium fluoride.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1