PCPE2: Expression of multifunctional extracellular glycoprotein associated with diverse cellular functions.

IF 5 2区 医学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Journal of Lipid Research Pub Date : 2024-10-05 DOI:10.1016/j.jlr.2024.100664
Michael J Thomas, Hao Xu, Angela Wang, Mirza Ahmar Beg, Mary G Sorci-Thomas
{"title":"PCPE2: Expression of multifunctional extracellular glycoprotein associated with diverse cellular functions.","authors":"Michael J Thomas, Hao Xu, Angela Wang, Mirza Ahmar Beg, Mary G Sorci-Thomas","doi":"10.1016/j.jlr.2024.100664","DOIUrl":null,"url":null,"abstract":"<p><p>Procollagen C-endopeptidase enhancer 2, known as PCPE2 or PCOC2 (gene name, PCOLCE2) is a glycoprotein that resides in the extracellular matrix, and is similar in domain organization to PCPE1/PCPE, PCOC1 (PCOLCE1/PCOLCE). Due to the many similarities between the two related proteins, PCPE2 has been assumed to have biological functions similar to PCPE. PCPE is a well-established enhancer of procollagen processing activating the enzyme, BMP-1. However, reports show that PCPE2 has a strikingly different tissue expression profile compared to PCPE. With that in mind and given the paucity of published studies on PCPE2, this review examines the current literature citing PCPE2 and its association with specific cell types and signaling pathways. Additionally, this review will present a brief history of PCPE2's discovery, highlighting structural and functional similarities and differences compared to PCPE. Considering the widespread use of RNA sequencing techniques to examine associations between cell-specific gene expression and disease states, we will show that PCPE2 is repeatedly found as a differentially regulated gene (DEG) significantly associated with a number of cellular processes, well beyond the scope of procollagen fibril processing.</p>","PeriodicalId":16209,"journal":{"name":"Journal of Lipid Research","volume":" ","pages":"100664"},"PeriodicalIF":5.0000,"publicationDate":"2024-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11567036/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Lipid Research","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.jlr.2024.100664","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Procollagen C-endopeptidase enhancer 2, known as PCPE2 or PCOC2 (gene name, PCOLCE2) is a glycoprotein that resides in the extracellular matrix, and is similar in domain organization to PCPE1/PCPE, PCOC1 (PCOLCE1/PCOLCE). Due to the many similarities between the two related proteins, PCPE2 has been assumed to have biological functions similar to PCPE. PCPE is a well-established enhancer of procollagen processing activating the enzyme, BMP-1. However, reports show that PCPE2 has a strikingly different tissue expression profile compared to PCPE. With that in mind and given the paucity of published studies on PCPE2, this review examines the current literature citing PCPE2 and its association with specific cell types and signaling pathways. Additionally, this review will present a brief history of PCPE2's discovery, highlighting structural and functional similarities and differences compared to PCPE. Considering the widespread use of RNA sequencing techniques to examine associations between cell-specific gene expression and disease states, we will show that PCPE2 is repeatedly found as a differentially regulated gene (DEG) significantly associated with a number of cellular processes, well beyond the scope of procollagen fibril processing.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
PCPE2:多功能细胞外糖蛋白的表达与多种细胞功能有关。
Procollagen C-endopeptidase enhancer 2(又称 PCPE2 或 PCOC2,基因名称为 PCOLCE2)是一种存在于细胞外基质中的糖蛋白,其结构域与 PCPE1 / PCPE、PCOC1(PCOLCE1 /PCOLCE)相似。由于这两种相关蛋白之间有许多相似之处,人们认为 PCPE2 具有与 PCPE 相似的生物学功能。PCPE 是一种公认的促进胶原蛋白加工的酶,可激活 BMP-1 酶。然而,有报告显示,与 PCPE 相比,PCPE2 的组织表达谱有显著不同。有鉴于此,并考虑到已发表的有关 PCPE2 的研究很少,本综述将对引用 PCPE2 及其与特定细胞类型和信号通路的关联的现有文献进行研究。此外,本综述还将简要介绍 PCPE2 的发现历史,并着重说明其与 PCPE 在结构和功能上的异同。考虑到 RNA 测序技术已被广泛用于研究细胞特异性基因表达与疾病状态之间的关联,我们将展示 PCPE2 作为一种差异调控基因(DEG)多次被发现与许多细胞过程有显著关联,远远超出了胶原纤维加工的范围。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Lipid Research
Journal of Lipid Research 生物-生化与分子生物学
CiteScore
11.10
自引率
4.60%
发文量
146
审稿时长
41 days
期刊介绍: The Journal of Lipid Research (JLR) publishes original articles and reviews in the broadly defined area of biological lipids. We encourage the submission of manuscripts relating to lipids, including those addressing problems in biochemistry, molecular biology, structural biology, cell biology, genetics, molecular medicine, clinical medicine and metabolism. Major criteria for acceptance of articles are new insights into mechanisms of lipid function and metabolism and/or genes regulating lipid metabolism along with sound primary experimental data. Interpretation of the data is the authors’ responsibility, and speculation should be labeled as such. Manuscripts that provide new ways of purifying, identifying and quantifying lipids are invited for the Methods section of the Journal. JLR encourages contributions from investigators in all countries, but articles must be submitted in clear and concise English.
期刊最新文献
Lipid Trajectories Improve Risk Models for Alzheimer's Disease and Mild Cognitive Impairment. In memoriam: Ana Jonas, PhD. Lysophosphatidylethanolamine improves diastolic dysfunction by alleviating mitochondrial injury in the aging heart. Chiral Clues to Lipid Identity. The antidepressant drug sertraline is a novel inhibitor of yeast Pah1 and human lipin 1 phosphatidic acid phosphatases.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1