Zinc-based Polyoxometalate Nanozyme Functionalized Hydrogels for optimizing the Hyperglycemic-Immune Microenvironment to Promote Diabetic Wound Regeneration.

IF 10.6 1区 生物学 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Journal of Nanobiotechnology Pub Date : 2024-10-08 DOI:10.1186/s12951-024-02840-7
Chaoyu Pu, Yong Wang, Honglin Xiang, Jiangtao He, Qiyuan Sun, Yuan Yong, Lu Chen, Ke Jiang, Hanfeng Yang, Yuling Li
{"title":"Zinc-based Polyoxometalate Nanozyme Functionalized Hydrogels for optimizing the Hyperglycemic-Immune Microenvironment to Promote Diabetic Wound Regeneration.","authors":"Chaoyu Pu, Yong Wang, Honglin Xiang, Jiangtao He, Qiyuan Sun, Yuan Yong, Lu Chen, Ke Jiang, Hanfeng Yang, Yuling Li","doi":"10.1186/s12951-024-02840-7","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>In diabetic wounds, hyperglycemia-induced cytotoxicity and impaired immune microenvironment plasticity directly hinder the wound healing process. Regulation of the hyperglycemic microenvironment and remodeling of the immune microenvironment are crucial.</p><p><strong>Results: </strong>Here, we developed a nanozymatic functionalized regenerative microenvironmental regulator (AHAMA/CS-GOx@Zn-POM) for the effective repair of diabetic wounds. This novel construct integrated an aldehyde and methacrylic anhydride-modified hyaluronic acid hydrogel (AHAMA) and chitosan nanoparticles (CS NPs) encapsulating zinc-based polymetallic oxonate nanozyme (Zn-POM) and glucose oxidase (GOx), facilitating a sustained release of release of both enzymes. The GOx catalyzed glucose to gluconic acid and (H₂O₂), thereby alleviating the effects of the hyperglycemic microenvironment on wound healing. Zn-POM exhibited catalase and superoxide dismutase activities to scavenge reactive oxygen species and H₂O₂, a by-product of glucose degradation. Additionally, Zn-POM induced M1 macrophage reprogramming to the M2 phenotype by inhibiting the MAPK/IL-17 signaling diminishing pro-inflammatory cytokines, and upregulating the expression of anti-inflammatory mediators, thus remodeling the immune microenvironment and enhancing angiogenesis and collagen regeneration within wounds. In a rat diabetic wound model, the application of AHAMA/CS-GOx@Zn-POM enhanced neovascularization and collagen deposition, accelerating the wound healing process.</p><p><strong>Conclusions: </strong>Therefore, the regenerative microenvironment regulator AHAMA/CS-GOx@Zn-POM can achieve the effective conversion of a pathological microenvironment to regenerative microenvironment through integrated control of the hyperglycemic-immune microenvironment, offering a novel strategy for the treatment of diabetic wounds.</p>","PeriodicalId":16383,"journal":{"name":"Journal of Nanobiotechnology","volume":null,"pages":null},"PeriodicalIF":10.6000,"publicationDate":"2024-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11462698/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nanobiotechnology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1186/s12951-024-02840-7","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Background: In diabetic wounds, hyperglycemia-induced cytotoxicity and impaired immune microenvironment plasticity directly hinder the wound healing process. Regulation of the hyperglycemic microenvironment and remodeling of the immune microenvironment are crucial.

Results: Here, we developed a nanozymatic functionalized regenerative microenvironmental regulator (AHAMA/CS-GOx@Zn-POM) for the effective repair of diabetic wounds. This novel construct integrated an aldehyde and methacrylic anhydride-modified hyaluronic acid hydrogel (AHAMA) and chitosan nanoparticles (CS NPs) encapsulating zinc-based polymetallic oxonate nanozyme (Zn-POM) and glucose oxidase (GOx), facilitating a sustained release of release of both enzymes. The GOx catalyzed glucose to gluconic acid and (H₂O₂), thereby alleviating the effects of the hyperglycemic microenvironment on wound healing. Zn-POM exhibited catalase and superoxide dismutase activities to scavenge reactive oxygen species and H₂O₂, a by-product of glucose degradation. Additionally, Zn-POM induced M1 macrophage reprogramming to the M2 phenotype by inhibiting the MAPK/IL-17 signaling diminishing pro-inflammatory cytokines, and upregulating the expression of anti-inflammatory mediators, thus remodeling the immune microenvironment and enhancing angiogenesis and collagen regeneration within wounds. In a rat diabetic wound model, the application of AHAMA/CS-GOx@Zn-POM enhanced neovascularization and collagen deposition, accelerating the wound healing process.

Conclusions: Therefore, the regenerative microenvironment regulator AHAMA/CS-GOx@Zn-POM can achieve the effective conversion of a pathological microenvironment to regenerative microenvironment through integrated control of the hyperglycemic-immune microenvironment, offering a novel strategy for the treatment of diabetic wounds.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
锌基多氧金属酸盐纳米酶功能化水凝胶用于优化高血糖-免疫微环境以促进糖尿病伤口再生
背景:在糖尿病伤口中,高血糖诱导的细胞毒性和受损的免疫微环境可塑性直接阻碍了伤口愈合过程。调节高血糖微环境和重塑免疫微环境至关重要:在此,我们开发了一种纳米酶功能化再生微环境调节剂(AHAMA/CS-GOx@Zn-POM),用于有效修复糖尿病伤口。这种新型结构整合了醛和甲基丙烯酸酐改性透明质酸水凝胶(AHAMA)和壳聚糖纳米颗粒(CS NPs),其中封装了锌基多金属氧膦酸盐纳米酶(Zn-POM)和葡萄糖氧化酶(GOx),促进了两种酶的持续释放。葡萄糖氧化酶可将葡萄糖催化成葡萄糖酸和(H₂O₂),从而减轻高血糖微环境对伤口愈合的影响。Zn-POM 具有过氧化氢酶和超氧化物歧化酶活性,可清除活性氧和葡萄糖降解的副产物 H₂O₂。此外,Zn-POM 还能抑制 MAPK/IL-17 信号转导,减少促炎细胞因子,上调抗炎介质的表达,从而诱导 M1 巨噬细胞重编程为 M2 表型,从而重塑免疫微环境,促进伤口内的血管生成和胶原再生。在大鼠糖尿病伤口模型中,AHAMA/CS-GOx@Zn-POM 的应用促进了血管新生和胶原沉积,加速了伤口愈合过程:因此,再生微环境调节剂 AHAMA/CS-GOx@Zn-POM 可通过综合控制高血糖免疫微环境,实现病理微环境向再生微环境的有效转化,为糖尿病伤口的治疗提供了一种新策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Nanobiotechnology
Journal of Nanobiotechnology BIOTECHNOLOGY & APPLIED MICROBIOLOGY-NANOSCIENCE & NANOTECHNOLOGY
CiteScore
13.90
自引率
4.90%
发文量
493
审稿时长
16 weeks
期刊介绍: Journal of Nanobiotechnology is an open access peer-reviewed journal communicating scientific and technological advances in the fields of medicine and biology, with an emphasis in their interface with nanoscale sciences. The journal provides biomedical scientists and the international biotechnology business community with the latest developments in the growing field of Nanobiotechnology.
期刊最新文献
Implantation of biomimetic polydopamine nanocomposite scaffold promotes optic nerve regeneration through modulating inhibitory microenvironment. Tetrahedral framework nucleic acids inhibit Aβ-mediated ferroptosis and ameliorate cognitive and synaptic impairments in Alzheimer's disease. A temperature-ultrasound sensitive nanoparticle delivery system for exploring central neuroinflammation mechanism in stroke-heart syndrome. Cascade-catalysed nanocarrier degradation for regulating metabolism homeostasis and enhancing drug penetration on breast cancer. Organoids and organoid extracellular vesicles-based disease treatment strategies.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1