Sehoon Park, Yisak Kim, Chung Hee Baek, Hyunjeong Cho, Ji In Park, Eun Sil Koh, Jung Pyo Lee, Sun-Hee Park, Hyung Woo Kim, Seung Hyeok Han, Ho Jun Chin, Dong Ki Kim, Kyung Chul Moon, Young-Gon Kim, Hajeong Lee
{"title":"Conventional machine learning-based prediction models did not outperform the International IgA Nephropathy Prediction Tool.","authors":"Sehoon Park, Yisak Kim, Chung Hee Baek, Hyunjeong Cho, Ji In Park, Eun Sil Koh, Jung Pyo Lee, Sun-Hee Park, Hyung Woo Kim, Seung Hyeok Han, Ho Jun Chin, Dong Ki Kim, Kyung Chul Moon, Young-Gon Kim, Hajeong Lee","doi":"10.23876/j.krcp.23.212","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Immunoglobulin A nephropathy (IgAN) is a major cause of end-stage kidney disease (ESKD). The International IgA Nephropathy Prediction Tool (IIgAN-PT) predicts IgAN prognosis, but improvement in the prediction performance using machine learning (ML)-based methods is needed.</p><p><strong>Methods: </strong>We analyzed 4,425 biopsy-confirmed patients with IgAN and ≥6 months of follow-up from nine tertiary university hospitals in Korea. The study population was divided into development and validation cohorts. Using the collected 87 clinicodemographic and pathological variables, ML-based prediction models for ESKD or estimated glomerular filtration rate were constructed: 1) the conventional CatBoost model, 2) the optimized CatBoost model with Cox proportional hazards, 3) the deep Cox proportional hazards model, and 4) the deep Cox mixture model. The area under the curve (AUC) and calibration plots were used to investigate the discriminative and calibration performance of the models, which were then compared with those of the IIgAN-PT full model.</p><p><strong>Results: </strong>The full model showed excellent performance (AUC [95% confidence interval] for 5-year outcome, 0.896 [0.8530.940]), with acceptable calibration results. The ML-based models showed good performance in predicting adverse kidney outcomes and revealed acceptable discrimination performance in the external validation (AUC [95% confidence interval] for the 5-year outcome: 1) 0.829 [0.791-0.866]; 2) 0.847 [0.804-0.890]; 3) 0.823 [0.784-0.862]; and 4) 0.832 [0.794-0.870]), although they underestimated the external validation cohort risks. With the validation data, the overall performance of the IIgAN-PT was non-inferior to that of the ML-based model. Conclusions: Our ML-based models showed good performance in predicting adverse kidney outcomes in patients with IgAN but they did not outperform the IIgAN-PT.</p>","PeriodicalId":17716,"journal":{"name":"Kidney Research and Clinical Practice","volume":null,"pages":null},"PeriodicalIF":2.9000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Kidney Research and Clinical Practice","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.23876/j.krcp.23.212","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"UROLOGY & NEPHROLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Immunoglobulin A nephropathy (IgAN) is a major cause of end-stage kidney disease (ESKD). The International IgA Nephropathy Prediction Tool (IIgAN-PT) predicts IgAN prognosis, but improvement in the prediction performance using machine learning (ML)-based methods is needed.
Methods: We analyzed 4,425 biopsy-confirmed patients with IgAN and ≥6 months of follow-up from nine tertiary university hospitals in Korea. The study population was divided into development and validation cohorts. Using the collected 87 clinicodemographic and pathological variables, ML-based prediction models for ESKD or estimated glomerular filtration rate were constructed: 1) the conventional CatBoost model, 2) the optimized CatBoost model with Cox proportional hazards, 3) the deep Cox proportional hazards model, and 4) the deep Cox mixture model. The area under the curve (AUC) and calibration plots were used to investigate the discriminative and calibration performance of the models, which were then compared with those of the IIgAN-PT full model.
Results: The full model showed excellent performance (AUC [95% confidence interval] for 5-year outcome, 0.896 [0.8530.940]), with acceptable calibration results. The ML-based models showed good performance in predicting adverse kidney outcomes and revealed acceptable discrimination performance in the external validation (AUC [95% confidence interval] for the 5-year outcome: 1) 0.829 [0.791-0.866]; 2) 0.847 [0.804-0.890]; 3) 0.823 [0.784-0.862]; and 4) 0.832 [0.794-0.870]), although they underestimated the external validation cohort risks. With the validation data, the overall performance of the IIgAN-PT was non-inferior to that of the ML-based model. Conclusions: Our ML-based models showed good performance in predicting adverse kidney outcomes in patients with IgAN but they did not outperform the IIgAN-PT.
期刊介绍:
Kidney Research and Clinical Practice (formerly The Korean Journal of Nephrology; ISSN 1975-9460, launched in 1982), the official journal of the Korean Society of Nephrology, is an international, peer-reviewed journal published in English. Its ISO abbreviation is Kidney Res Clin Pract. To provide an efficient venue for dissemination of knowledge and discussion of topics related to basic renal science and clinical practice, the journal offers open access (free submission and free access) and considers articles on all aspects of clinical nephrology and hypertension as well as related molecular genetics, anatomy, pathology, physiology, pharmacology, and immunology. In particular, the journal focuses on translational renal research that helps bridging laboratory discovery with the diagnosis and treatment of human kidney disease. Topics covered include basic science with possible clinical applicability and papers on the pathophysiological basis of disease processes of the kidney. Original researches from areas of intervention nephrology or dialysis access are also welcomed. Major article types considered for publication include original research and reviews on current topics of interest. Accepted manuscripts are granted free online open-access immediately after publication, which permits its users to read, download, copy, distribute, print, search, or link to the full texts of its articles to facilitate access to a broad readership. Circulation number of print copies is 1,600.