NanoPlex: a universal strategy for fluorescence microscopy multiplexing using nanobodies with erasable signals.

IF 14.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES Nature Communications Pub Date : 2024-10-10 DOI:10.1038/s41467-024-53030-w
Nikolaos Mougios, Elena R Cotroneo, Nils Imse, Jonas Setzke, Silvio O Rizzoli, Nadja A Simeth, Roman Tsukanov, Felipe Opazo
{"title":"NanoPlex: a universal strategy for fluorescence microscopy multiplexing using nanobodies with erasable signals.","authors":"Nikolaos Mougios, Elena R Cotroneo, Nils Imse, Jonas Setzke, Silvio O Rizzoli, Nadja A Simeth, Roman Tsukanov, Felipe Opazo","doi":"10.1038/s41467-024-53030-w","DOIUrl":null,"url":null,"abstract":"<p><p>Fluorescence microscopy has long been a transformative technique in biological sciences. Nevertheless, most implementations are limited to a few targets, which have been revealed using primary antibodies and fluorescently conjugated secondary antibodies. Super-resolution techniques such as Exchange-PAINT and, more recently, SUM-PAINT have increased multiplexing capabilities, but they require specialized equipment, software, and knowledge. To enable multiplexing for any imaging technique in any laboratory, we developed NanoPlex, a streamlined method based on conventional antibodies revealed by engineered secondary nanobodies that allow the selective removal of fluorescence signals. We develop three complementary signal removal strategies: OptoPlex (light-induced), EnzyPlex (enzymatic), and ChemiPlex (chemical). We showcase NanoPlex reaching 21 targets for 3D confocal analyses and 5-8 targets for dSTORM and STED super-resolution imaging. NanoPlex has the potential to revolutionize multi-target fluorescent imaging methods, potentially redefining the multiplexing capabilities of antibody-based assays.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":null,"pages":null},"PeriodicalIF":14.7000,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-024-53030-w","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Fluorescence microscopy has long been a transformative technique in biological sciences. Nevertheless, most implementations are limited to a few targets, which have been revealed using primary antibodies and fluorescently conjugated secondary antibodies. Super-resolution techniques such as Exchange-PAINT and, more recently, SUM-PAINT have increased multiplexing capabilities, but they require specialized equipment, software, and knowledge. To enable multiplexing for any imaging technique in any laboratory, we developed NanoPlex, a streamlined method based on conventional antibodies revealed by engineered secondary nanobodies that allow the selective removal of fluorescence signals. We develop three complementary signal removal strategies: OptoPlex (light-induced), EnzyPlex (enzymatic), and ChemiPlex (chemical). We showcase NanoPlex reaching 21 targets for 3D confocal analyses and 5-8 targets for dSTORM and STED super-resolution imaging. NanoPlex has the potential to revolutionize multi-target fluorescent imaging methods, potentially redefining the multiplexing capabilities of antibody-based assays.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
NanoPlex:使用可擦除信号的纳米抗体进行荧光显微镜多路复用的通用策略。
长期以来,荧光显微技术一直是生物科学领域的一项变革性技术。然而,大多数应用仅限于少数几个目标,这些目标是通过一抗和荧光共轭二抗揭示的。超分辨率技术(如 Exchange-PAINT 和最近的 SUM-PAINT)提高了多重成像能力,但它们需要专业的设备、软件和知识。为了在任何实验室实现任何成像技术的复用,我们开发了 NanoPlex,这是一种基于传统抗体的简化方法,由工程化的纳米二抗揭示,可以选择性地去除荧光信号。我们开发了三种互补的信号去除策略:OptoPlex(光诱导)、EnzyPlex(酶解)和 ChemiPlex(化学)。我们展示了用于三维共焦分析的 21 个目标和用于 dSTORM 和 STED 超分辨率成像的 5-8 个目标的 NanoPlex。NanoPlex 有可能彻底改变多靶点荧光成像方法,并有可能重新定义基于抗体检测的多重能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Nature Communications
Nature Communications Biological Science Disciplines-
CiteScore
24.90
自引率
2.40%
发文量
6928
审稿时长
3.7 months
期刊介绍: Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.
期刊最新文献
Learning quantum properties from short-range correlations using multi-task networks. Artificial superconducting Kondo lattice in a van der Waals heterostructure Disordered regions of human eIF4B orchestrate a dynamic self-association landscape. Enhancing fairness in AI-enabled medical systems with the attribute neutral framework. Multi-scenario surveillance of respiratory viruses in aerosols with sub-single-copy spatial resolution.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1