Photo-ferroelectric perovskite interfaces for boosting VOC in efficient perovskite solar cells.

IF 14.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES Nature Communications Pub Date : 2024-10-09 DOI:10.1038/s41467-024-53121-8
Giovanni Pica, Lorenzo Pancini, Christopher E Petoukhoff, Badri Vishal, Francesco Toniolo, Changzeng Ding, Young-Kwang Jung, Mirko Prato, Nada Mrkyvkova, Peter Siffalovic, Stefaan De Wolf, Chang-Qi Ma, Frédéric Laquai, Aron Walsh, Giulia Grancini
{"title":"Photo-ferroelectric perovskite interfaces for boosting V<sub>OC</sub> in efficient perovskite solar cells.","authors":"Giovanni Pica, Lorenzo Pancini, Christopher E Petoukhoff, Badri Vishal, Francesco Toniolo, Changzeng Ding, Young-Kwang Jung, Mirko Prato, Nada Mrkyvkova, Peter Siffalovic, Stefaan De Wolf, Chang-Qi Ma, Frédéric Laquai, Aron Walsh, Giulia Grancini","doi":"10.1038/s41467-024-53121-8","DOIUrl":null,"url":null,"abstract":"<p><p>Interface engineering is the core of device optimization, and this is particularly true for perovskite photovoltaics (PVs). The steady improvement in their performance has been largely driven by careful manipulation of interface chemistry to reduce unwanted recombination. Despite that, PVs devices still suffer from unavoidable open circuit voltage (V<sub>OC</sub>) losses. Here, we propose a different approach by creating a photo-ferroelectric perovskite interface. By engineering an ultrathin ferroelectric two-dimensional perovskite (2D) which sandwiches a perovskite bulk, we exploit the electric field generated by external polarization in the 2D layer to enhance charge separation and minimize interfacial recombination. As a result, we observe a net gain in the device V<sub>OC</sub> reaching 1.21 V, the highest value reported to date for highly efficient perovskite PVs, leading to a champion efficiency of 24%. Modeling depicts a coherent matching of the crystal and electronic structure at the interface, robust to defect states and molecular reorientation. The interface physics is finely tuned by the photoferroelectric field, representing a new tool for advanced perovskite device design.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":null,"pages":null},"PeriodicalIF":14.7000,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11464595/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-024-53121-8","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Interface engineering is the core of device optimization, and this is particularly true for perovskite photovoltaics (PVs). The steady improvement in their performance has been largely driven by careful manipulation of interface chemistry to reduce unwanted recombination. Despite that, PVs devices still suffer from unavoidable open circuit voltage (VOC) losses. Here, we propose a different approach by creating a photo-ferroelectric perovskite interface. By engineering an ultrathin ferroelectric two-dimensional perovskite (2D) which sandwiches a perovskite bulk, we exploit the electric field generated by external polarization in the 2D layer to enhance charge separation and minimize interfacial recombination. As a result, we observe a net gain in the device VOC reaching 1.21 V, the highest value reported to date for highly efficient perovskite PVs, leading to a champion efficiency of 24%. Modeling depicts a coherent matching of the crystal and electronic structure at the interface, robust to defect states and molecular reorientation. The interface physics is finely tuned by the photoferroelectric field, representing a new tool for advanced perovskite device design.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于提高高效包晶太阳能电池 VOC 的光铁电包晶界面。
界面工程是设备优化的核心,对于过氧化物光伏(PV)来说尤其如此。光伏器件性能的稳步提高主要得益于对界面化学的精心处理,以减少不必要的重组。尽管如此,光伏器件仍然存在不可避免的开路电压(VOC)损失。在这里,我们提出了一种不同的方法,即创建一个光电铁电体包晶界面。我们利用二维层中外部极化产生的电场来增强电荷分离,并最大限度地减少界面重组。因此,我们观察到器件 VOC 的净增益达到了 1.21 V,这是迄今为止报道的高效包晶光伏器件的最高值,冠军效率达到了 24%。建模描绘了晶体和电子结构在界面上的一致性匹配,对缺陷状态和分子重新定向具有稳健性。光铁电场对界面物理进行了微调,为先进的过氧化物器件设计提供了新的工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Nature Communications
Nature Communications Biological Science Disciplines-
CiteScore
24.90
自引率
2.40%
发文量
6928
审稿时长
3.7 months
期刊介绍: Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.
期刊最新文献
Iron-loaded cancer-associated fibroblasts induce immunosuppression in prostate cancer Sequencing-guided re-estimation and promotion of cultivability for environmental bacteria High drain field impact ionization transistors as ideal switches Glucose metabolism controls monocyte homeostasis and migration but has no impact on atherosclerosis development in mice Identifying septic shock subgroups to tailor fluid strategies through multi-omics integration
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1