{"title":"Neurological effects of carbon quantum dots on zebrafish: A review","authors":"Monika Sharma , Chaitanya Kumar , Shailendra Kumar Arya , Sanjeev Puri , Madhu Khatri","doi":"10.1016/j.neuroscience.2024.10.016","DOIUrl":null,"url":null,"abstract":"<div><div>Fluorescent carbon dots have emerged as promising nanomaterials for various applications, including bioimaging, food safety detection and drug delivery. However, their potential impact on neurological systems, especially <em>in-vivo</em> models, remains a critical area of investigation. This review focuses on the neurological effects of carbon dots and carbon quantum dots on zebrafish, an established vertebrate model with a conserved central nervous system. Recent studies have demonstrated the efficient uptake and distribution of carbon dots in zebrafish tissues, with a particular affinity for neural tissues. The intricate neural architecture of zebrafish allows for the precise examination of behavioral changes and neurodevelopmental alterations induced by fluorescent carbon dots. Neurotoxicity assessments reveal both short-term and long-term effects, ranging from immediate behavioral alterations to subtle changes in neuronal morphology. The review discusses potential mechanisms underlying these effects highlights the need for standardized methodologies in assessing neurological outcomes and emphasizes the importance of ethical considerations in nanomaterial research. As the field of nanotechnology continues to advance, a comprehensive understanding of the impact of fluorescent carbon dots on neurological function in zebrafish is crucial for informing safe and sustainable applications in medicine and beyond.</div></div>","PeriodicalId":19142,"journal":{"name":"Neuroscience","volume":null,"pages":null},"PeriodicalIF":2.9000,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0306452224005189","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Fluorescent carbon dots have emerged as promising nanomaterials for various applications, including bioimaging, food safety detection and drug delivery. However, their potential impact on neurological systems, especially in-vivo models, remains a critical area of investigation. This review focuses on the neurological effects of carbon dots and carbon quantum dots on zebrafish, an established vertebrate model with a conserved central nervous system. Recent studies have demonstrated the efficient uptake and distribution of carbon dots in zebrafish tissues, with a particular affinity for neural tissues. The intricate neural architecture of zebrafish allows for the precise examination of behavioral changes and neurodevelopmental alterations induced by fluorescent carbon dots. Neurotoxicity assessments reveal both short-term and long-term effects, ranging from immediate behavioral alterations to subtle changes in neuronal morphology. The review discusses potential mechanisms underlying these effects highlights the need for standardized methodologies in assessing neurological outcomes and emphasizes the importance of ethical considerations in nanomaterial research. As the field of nanotechnology continues to advance, a comprehensive understanding of the impact of fluorescent carbon dots on neurological function in zebrafish is crucial for informing safe and sustainable applications in medicine and beyond.
期刊介绍:
Neuroscience publishes papers describing the results of original research on any aspect of the scientific study of the nervous system. Any paper, however short, will be considered for publication provided that it reports significant, new and carefully confirmed findings with full experimental details.