Abraham Fikru Mechesso, Weiwei Zhang, Yajuan Su, Jingwei Xie, Guangshun Wang
{"title":"Segment-Based Peptide Design Reveals the Importance of N-Terminal High Cationicity for Antimicrobial Activity Against Gram-Negative Pathogens.","authors":"Abraham Fikru Mechesso, Weiwei Zhang, Yajuan Su, Jingwei Xie, Guangshun Wang","doi":"10.1007/s12602-024-10376-3","DOIUrl":null,"url":null,"abstract":"<p><p>Host defense antimicrobial peptides (AMPs) are recognized candidates to develop a new generation of peptide antibiotics. While high hydrophobicity can be deployed in peptides for eliminating Gram-positive bacteria, high cationicity is usually observed in AMPs against Gram-negative pathogen. This study investigates how the sequence distribution of basic amino acids affects peptide activity. For this purpose, we utilized human cathelicidin LL-37 as a template and designed four highly selective ultrashort peptides with similar length, net charge, and hydrophobic content. LL-10 + , RK-9 + , KR-8 + , and RIK-10 + showed similar activity against methicillin-resistant Staphylococcus aureus in vitro and comparable antibiofilm efficacy in a murine wound model. However, these peptides showed clear activity differences against Gram-negative pathogens with RIK-10 + (i.e., LL-37mini2) being the strongest and LL-10 + the weakest. To understand this activity difference, we characterized peptide toxicity; the effects of salts, pH, and serum on peptide activity; and the mechanism of action and determined the membrane-bound helical structure for RIK-10 + by two-dimensional NMR spectroscopy. By writing an R program, we generated charge density plots for these peptides and uncovered the importance of the N-terminal high-density basic charges for antimicrobial potency. To validate this finding, we reversed the sequences of two peptides. Interestingly, sequence reversal weakened the activity of RIK-10 + but increased the activity of LL-10 + especially against Escherichia coli, Pseudomonas aeruginosa, and Acinetobacter baumannii. Those more active peptides with high cationicity at the N-terminus are also more hydrophobic based on HPLC retention times. A database search found numerous natural sequences that arrange basic amino acids primarily at the N-terminus. Combined, this study not only obtained novel peptide leads but also discovered one useful strategy for designing novel antimicrobials to control drug-resistant Gram-negative pathogens.</p>","PeriodicalId":20506,"journal":{"name":"Probiotics and Antimicrobial Proteins","volume":" ","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2024-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Probiotics and Antimicrobial Proteins","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s12602-024-10376-3","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Host defense antimicrobial peptides (AMPs) are recognized candidates to develop a new generation of peptide antibiotics. While high hydrophobicity can be deployed in peptides for eliminating Gram-positive bacteria, high cationicity is usually observed in AMPs against Gram-negative pathogen. This study investigates how the sequence distribution of basic amino acids affects peptide activity. For this purpose, we utilized human cathelicidin LL-37 as a template and designed four highly selective ultrashort peptides with similar length, net charge, and hydrophobic content. LL-10 + , RK-9 + , KR-8 + , and RIK-10 + showed similar activity against methicillin-resistant Staphylococcus aureus in vitro and comparable antibiofilm efficacy in a murine wound model. However, these peptides showed clear activity differences against Gram-negative pathogens with RIK-10 + (i.e., LL-37mini2) being the strongest and LL-10 + the weakest. To understand this activity difference, we characterized peptide toxicity; the effects of salts, pH, and serum on peptide activity; and the mechanism of action and determined the membrane-bound helical structure for RIK-10 + by two-dimensional NMR spectroscopy. By writing an R program, we generated charge density plots for these peptides and uncovered the importance of the N-terminal high-density basic charges for antimicrobial potency. To validate this finding, we reversed the sequences of two peptides. Interestingly, sequence reversal weakened the activity of RIK-10 + but increased the activity of LL-10 + especially against Escherichia coli, Pseudomonas aeruginosa, and Acinetobacter baumannii. Those more active peptides with high cationicity at the N-terminus are also more hydrophobic based on HPLC retention times. A database search found numerous natural sequences that arrange basic amino acids primarily at the N-terminus. Combined, this study not only obtained novel peptide leads but also discovered one useful strategy for designing novel antimicrobials to control drug-resistant Gram-negative pathogens.
期刊介绍:
Probiotics and Antimicrobial Proteins publishes reviews, original articles, letters and short notes and technical/methodological communications aimed at advancing fundamental knowledge and exploration of the applications of probiotics, natural antimicrobial proteins and their derivatives in biomedical, agricultural, veterinary, food, and cosmetic products. The Journal welcomes fundamental research articles and reports on applications of these microorganisms and substances, and encourages structural studies and studies that correlate the structure and functional properties of antimicrobial proteins.