{"title":"Melatonin Induces Analgesic Effects through MT<sub>2</sub> Receptor-Mediated Neuroimmune Modulation in the Mice Anterior Cingulate Cortex.","authors":"Jian Wang, Junxiang Gu, Fujuan Ma, Yi Wei, Pan Wang, Shanming Yang, Xianxia Yan, Yifan Xiao, Keke Xing, Anxin Lou, Liru Zheng, Tingting Cao, Dayu Zhu, Jinlian Li, Luoying Zhang, Yunqing Li, Tao Chen","doi":"10.34133/research.0493","DOIUrl":null,"url":null,"abstract":"<p><p>Neuropathic pain (NP) represents a considerable clinical challenge, profoundly impacting patients' quality of life. Presently, pharmacotherapy serves as a primary approach for NP alleviation, yet its efficacy often remains suboptimal. Melatonin (MLT), a biologically active compound secreted by the pineal gland, has long been associated with promoting and maintaining sleep. Although recent studies suggest analgesic effects of MLT, the underlying mechanism remains largely unknown, particularly its impact on the cortex. In this study, we induced an NP model in mice through spared nerve injury (SNI) and observed a considerable, dose-dependent alleviation in NP symptoms following intraperitoneal or anterior cingulate cortex (ACC) administration of MLT. Our findings further indicated that the NP management of MLT is selectively mediated by MLT-related receptor 2 (MT<sub>2</sub>R), rather than MT<sub>1</sub>R, on neurons and microglia within the ACC. Transcriptome sequencing, complemented by bioinformatics analysis, implicated MLT in the modulation of Gα(i) and immune-inflammatory signals. Specifically, MLT inhibited the excitability level of pyramidal cells in the ACC by activating the Gα(i) signaling pathway. Simultaneously, MLT attenuated M<sub>1</sub> polarization and promoted M<sub>2</sub> polarization of microglia, thereby mitigating the inflammatory response and type II interferon response within the ACC. These findings unveil a hitherto unrecognized molecular mechanism: an MLT-mediated neuroimmune modulation pathway in the ACC mediated by MT<sub>2</sub>R. This elucidation sheds light on the regulatory character of MLT in chronic nociceptive pain conditions, offering a prospective therapeutic strategy for NP management.</p>","PeriodicalId":21120,"journal":{"name":"Research","volume":"7 ","pages":"0493"},"PeriodicalIF":11.0000,"publicationDate":"2024-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11458856/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Research","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.34133/research.0493","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"Multidisciplinary","Score":null,"Total":0}
引用次数: 0
Abstract
Neuropathic pain (NP) represents a considerable clinical challenge, profoundly impacting patients' quality of life. Presently, pharmacotherapy serves as a primary approach for NP alleviation, yet its efficacy often remains suboptimal. Melatonin (MLT), a biologically active compound secreted by the pineal gland, has long been associated with promoting and maintaining sleep. Although recent studies suggest analgesic effects of MLT, the underlying mechanism remains largely unknown, particularly its impact on the cortex. In this study, we induced an NP model in mice through spared nerve injury (SNI) and observed a considerable, dose-dependent alleviation in NP symptoms following intraperitoneal or anterior cingulate cortex (ACC) administration of MLT. Our findings further indicated that the NP management of MLT is selectively mediated by MLT-related receptor 2 (MT2R), rather than MT1R, on neurons and microglia within the ACC. Transcriptome sequencing, complemented by bioinformatics analysis, implicated MLT in the modulation of Gα(i) and immune-inflammatory signals. Specifically, MLT inhibited the excitability level of pyramidal cells in the ACC by activating the Gα(i) signaling pathway. Simultaneously, MLT attenuated M1 polarization and promoted M2 polarization of microglia, thereby mitigating the inflammatory response and type II interferon response within the ACC. These findings unveil a hitherto unrecognized molecular mechanism: an MLT-mediated neuroimmune modulation pathway in the ACC mediated by MT2R. This elucidation sheds light on the regulatory character of MLT in chronic nociceptive pain conditions, offering a prospective therapeutic strategy for NP management.
期刊介绍:
Research serves as a global platform for academic exchange, collaboration, and technological advancements. This journal welcomes high-quality research contributions from any domain, with open arms to authors from around the globe.
Comprising fundamental research in the life and physical sciences, Research also highlights significant findings and issues in engineering and applied science. The journal proudly features original research articles, reviews, perspectives, and editorials, fostering a diverse and dynamic scholarly environment.