{"title":"Do not overlook the possibility of genome-edited somatic cells ending up in the human germline.","authors":"Alexis Heng Boon Chin, Ningyu Sun","doi":"10.1007/s12687-024-00741-8","DOIUrl":null,"url":null,"abstract":"<p><p>Most debates on human germline genome editing have limited discussions to just genetic modifications of sperm and eggs (gametes), their precursors within testicular or ovarian tissues, and preimplantation human embryos. What has largely been overlooked is that genome editing of somatic (non-reproductive) cells can also become heritable and can potentially be transmitted to future generations of human offspring under specific experimental conditions, due to the emergence of various new technology platforms. Most notably, the reprogramming of human somatic cells to a pluripotent \"embryonic stem cell-like\" state (i.e. induced pluripotent stem cells), has opened up the possibility that genome editing performed on human somatic cells can also be transmitted to future generations of human offspring when combined with other new technology platforms, such as in vitro gametogenesis, chimeric and synthetic embryos. Additionally, due to high levels of plasticity and extensive tissue remodeling within the human fetus during gestation, it is speculated that genome editing performed on fetal somatic cells intended for fetal gene therapy in utero may be unintentionally transmitted to the human germline. Hence, there should be strict regulatory oversight to ensure that any genome-edited somatic cell that ends up in the human germline via such aforementioned technology platforms does so in strict compliance with relevant legislation and ethical guidelines, especially that pertaining to safety issues with genome editing technology and its potential misuse in human enhancement and eugenics.</p>","PeriodicalId":46965,"journal":{"name":"Journal of Community Genetics","volume":" ","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Community Genetics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s12687-024-00741-8","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0
Abstract
Most debates on human germline genome editing have limited discussions to just genetic modifications of sperm and eggs (gametes), their precursors within testicular or ovarian tissues, and preimplantation human embryos. What has largely been overlooked is that genome editing of somatic (non-reproductive) cells can also become heritable and can potentially be transmitted to future generations of human offspring under specific experimental conditions, due to the emergence of various new technology platforms. Most notably, the reprogramming of human somatic cells to a pluripotent "embryonic stem cell-like" state (i.e. induced pluripotent stem cells), has opened up the possibility that genome editing performed on human somatic cells can also be transmitted to future generations of human offspring when combined with other new technology platforms, such as in vitro gametogenesis, chimeric and synthetic embryos. Additionally, due to high levels of plasticity and extensive tissue remodeling within the human fetus during gestation, it is speculated that genome editing performed on fetal somatic cells intended for fetal gene therapy in utero may be unintentionally transmitted to the human germline. Hence, there should be strict regulatory oversight to ensure that any genome-edited somatic cell that ends up in the human germline via such aforementioned technology platforms does so in strict compliance with relevant legislation and ethical guidelines, especially that pertaining to safety issues with genome editing technology and its potential misuse in human enhancement and eugenics.
期刊介绍:
The Journal of Community Genetics is an international forum for research in the ever-expanding field of community genetics, the art and science of applying medical genetics to human communities for the benefit of their individuals.
Community genetics comprises all activities which identify persons at increased genetic risk and has an interest in assessing this risk, in order to enable those at risk to make informed decisions. Community genetics services thus encompass such activities as genetic screening, registration of genetic conditions in the population, routine preconceptional and prenatal genetic consultations, public education on genetic issues, and public debate on related ethical issues.
The Journal of Community Genetics has a multidisciplinary scope. It covers medical genetics, epidemiology, genetics in primary care, public health aspects of genetics, and ethical, legal, social and economic issues. Its intention is to serve as a forum for community genetics worldwide, with a focus on low- and middle-income countries.
The journal features original research papers, reviews, short communications, program reports, news, and correspondence. Program reports describe illustrative projects in the field of community genetics, e.g., design and progress of an educational program or the protocol and achievement of a gene bank. Case reports describing individual patients are not accepted.