J-Anne Yow, Neha Priyadarshini Garg, Manoj Ramanathan, Wei Tech Ang
{"title":"ExTraCT - Explainable trajectory corrections for language-based human-robot interaction using textual feature descriptions.","authors":"J-Anne Yow, Neha Priyadarshini Garg, Manoj Ramanathan, Wei Tech Ang","doi":"10.3389/frobt.2024.1345693","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>In human-robot interaction (HRI), understanding human intent is crucial for robots to perform tasks that align with user preferences. Traditional methods that aim to modify robot trajectories based on language corrections often require extensive training to generalize across diverse objects, initial trajectories, and scenarios. This work presents ExTraCT, a modular framework designed to modify robot trajectories (and behaviour) using natural language input.</p><p><strong>Methods: </strong>Unlike traditional end-to-end learning approaches, ExTraCT separates language understanding from trajectory modification, allowing robots to adapt language corrections to new tasks-including those with complex motions like scooping-as well as various initial trajectories and object configurations without additional end-to-end training. ExTraCT leverages Large Language Models (LLMs) to semantically match language corrections to predefined trajectory modification functions, allowing the robot to make necessary adjustments to its path. This modular approach overcomes the limitations of pre-trained datasets and offers versatility across various applications.</p><p><strong>Results: </strong>Comprehensive user studies conducted in simulation and with a physical robot arm demonstrated that ExTraCT's trajectory corrections are more accurate and preferred by users in 80% of cases compared to the baseline.</p><p><strong>Discussion: </strong>ExTraCT offers a more explainable approach to understanding language corrections, which could facilitate learning human preferences. We also demonstrated the adaptability and effectiveness of ExTraCT in a complex scenarios like assistive feeding, presenting it as a versatile solution across various HRI applications.</p>","PeriodicalId":47597,"journal":{"name":"Frontiers in Robotics and AI","volume":null,"pages":null},"PeriodicalIF":2.9000,"publicationDate":"2024-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11456793/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Robotics and AI","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3389/frobt.2024.1345693","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"ROBOTICS","Score":null,"Total":0}
引用次数: 0
Abstract
Introduction: In human-robot interaction (HRI), understanding human intent is crucial for robots to perform tasks that align with user preferences. Traditional methods that aim to modify robot trajectories based on language corrections often require extensive training to generalize across diverse objects, initial trajectories, and scenarios. This work presents ExTraCT, a modular framework designed to modify robot trajectories (and behaviour) using natural language input.
Methods: Unlike traditional end-to-end learning approaches, ExTraCT separates language understanding from trajectory modification, allowing robots to adapt language corrections to new tasks-including those with complex motions like scooping-as well as various initial trajectories and object configurations without additional end-to-end training. ExTraCT leverages Large Language Models (LLMs) to semantically match language corrections to predefined trajectory modification functions, allowing the robot to make necessary adjustments to its path. This modular approach overcomes the limitations of pre-trained datasets and offers versatility across various applications.
Results: Comprehensive user studies conducted in simulation and with a physical robot arm demonstrated that ExTraCT's trajectory corrections are more accurate and preferred by users in 80% of cases compared to the baseline.
Discussion: ExTraCT offers a more explainable approach to understanding language corrections, which could facilitate learning human preferences. We also demonstrated the adaptability and effectiveness of ExTraCT in a complex scenarios like assistive feeding, presenting it as a versatile solution across various HRI applications.
期刊介绍:
Frontiers in Robotics and AI publishes rigorously peer-reviewed research covering all theory and applications of robotics, technology, and artificial intelligence, from biomedical to space robotics.