Poncirin Impact on Human HER2 Breast Cancer Cells: Inhibiting Proliferation, Metastasis, and Tumor Growth in Mice Potentially through The PI3K/AKT Pathway.

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Accounts of Chemical Research Pub Date : 2024-10-07 DOI:10.22074/cellj.2024.2014892.1441
Hao Yun, Li Jing, Jinwen Zhou, Yuanwei Liu, Jin Zhang
{"title":"Poncirin Impact on Human HER2 Breast Cancer Cells: Inhibiting Proliferation, Metastasis, and Tumor Growth in Mice Potentially through The PI3K/AKT Pathway.","authors":"Hao Yun, Li Jing, Jinwen Zhou, Yuanwei Liu, Jin Zhang","doi":"10.22074/cellj.2024.2014892.1441","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>Breast cancer is a prevalent and heterogeneous disease, with human epidermal growth factor receptor-2 (HER2) overexpression occurring in over 20% of cases. Poncirin, a biologically active flavonone derived from the immature dried fruits of Poncirus trifoliata, is a 7-O-neohesperidoside of isosakuranetin with a well-documented history in traditional Chinese medicine for its health-promoting properties. While the previous research hinted at its potential as an anticancer agent, its specific effects on HER2 overexpressing breast cancer cells remain largely unexplored. The aim of this study is to investigate the specific effects of Poncirin, on HER2 overexpressing breast cancer cells.</p><p><strong>Materials and methods: </strong>In experimental study, we assessed cell proliferation using the CCK-8 assay and explored cell migration and invasion with transwell assays. Additionally, we evaluated colony formation ability and examined apoptosis through the acridine orange/ethidium bromide (AO/EB) and Annexin V-fluorescein isothiocyanate (FITC)/ propidium iodide (PI) staining methods. The study also delved into the molecular mechanisms involved by scrutinizing the phosphatidylinositol 3-kinase/serine-threonine protein kinase (PI3K/AKT) signaling pathway via Western blotting. Furthermore, the researchers conducted <i>in vivo</i> experiments using mouse models to corroborate the findings in a living organism.</p><p><strong>Results: </strong>Poncirin demonstrated a remarkable ability to selectively inhibit proliferation and metastasis of HER2 overexpressing breast cancer cells. Mechanistically, the compound seemed to exert its effects by modulating the PI3K/AKT signaling pathway, implying its central role in the observed anticancer effects. These findings were further substantiated by <i>in vivo</i> experiments, which consistently showed a reduction in tumor growth when poncirin was administered.</p><p><strong>Conclusion: </strong>This study underscores potential of poncirin as a potent agent for restraining the growth and metastasis of HER2 overexpressing breast cancer cells. The evidence suggests that poncirin efficacy may be attributed to its modulation possibly through PI3K/AKT pathway.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.22074/cellj.2024.2014892.1441","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Objective: Breast cancer is a prevalent and heterogeneous disease, with human epidermal growth factor receptor-2 (HER2) overexpression occurring in over 20% of cases. Poncirin, a biologically active flavonone derived from the immature dried fruits of Poncirus trifoliata, is a 7-O-neohesperidoside of isosakuranetin with a well-documented history in traditional Chinese medicine for its health-promoting properties. While the previous research hinted at its potential as an anticancer agent, its specific effects on HER2 overexpressing breast cancer cells remain largely unexplored. The aim of this study is to investigate the specific effects of Poncirin, on HER2 overexpressing breast cancer cells.

Materials and methods: In experimental study, we assessed cell proliferation using the CCK-8 assay and explored cell migration and invasion with transwell assays. Additionally, we evaluated colony formation ability and examined apoptosis through the acridine orange/ethidium bromide (AO/EB) and Annexin V-fluorescein isothiocyanate (FITC)/ propidium iodide (PI) staining methods. The study also delved into the molecular mechanisms involved by scrutinizing the phosphatidylinositol 3-kinase/serine-threonine protein kinase (PI3K/AKT) signaling pathway via Western blotting. Furthermore, the researchers conducted in vivo experiments using mouse models to corroborate the findings in a living organism.

Results: Poncirin demonstrated a remarkable ability to selectively inhibit proliferation and metastasis of HER2 overexpressing breast cancer cells. Mechanistically, the compound seemed to exert its effects by modulating the PI3K/AKT signaling pathway, implying its central role in the observed anticancer effects. These findings were further substantiated by in vivo experiments, which consistently showed a reduction in tumor growth when poncirin was administered.

Conclusion: This study underscores potential of poncirin as a potent agent for restraining the growth and metastasis of HER2 overexpressing breast cancer cells. The evidence suggests that poncirin efficacy may be attributed to its modulation possibly through PI3K/AKT pathway.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Poncirin 对人类 HER2 乳腺癌细胞的影响:可能通过 PI3K/AKT 通路抑制小鼠的增殖、转移和肿瘤生长
目的:乳腺癌是一种常见的异质性疾病,20%以上的病例存在人类表皮生长因子受体-2(HER2)过表达。枸橘苷(Poncirin)是一种具有生物活性的黄酮类化合物,从三叶枸橘(Poncirus trifoliata)的未成熟干果中提取,是异樱桃素的一种 7-O-neohesperidoside ,在传统中药中具有促进健康的作用,历史悠久。虽然之前的研究暗示了其作为抗癌剂的潜力,但其对 HER2 过度表达的乳腺癌细胞的特定作用在很大程度上仍未得到探索。本研究的目的是调查 Poncirin 对 HER2 过度表达乳腺癌细胞的特殊作用:在实验研究中,我们使用 CCK-8 检测法评估了细胞增殖情况,并使用透孔试验探索了细胞迁移和侵袭情况。此外,我们还评估了集落形成能力,并通过吖啶橙/溴化乙锭(AO/EB)和附件素 V-异硫氰酸荧光素(FITC)/碘化丙啶(PI)染色法检测了细胞凋亡。研究还通过Western印迹法仔细检查了磷脂酰肌醇3-激酶/丝氨酸-苏氨酸蛋白激酶(PI3K/AKT)信号通路,从而深入研究了其中的分子机制。此外,研究人员还利用小鼠模型进行了体内实验,以证实在活体生物体中的研究结果:结果:Poncirin 能选择性地抑制 HER2 过表达乳腺癌细胞的增殖和转移。从机理上讲,该化合物似乎是通过调节 PI3K/AKT 信号通路来发挥其作用的,这意味着它在所观察到的抗癌效应中起着核心作用。这些发现在体内实验中得到了进一步证实,实验结果一致表明,服用庞西林后,肿瘤生长速度降低:本研究强调了枸橘苷作为抑制 HER2 过度表达乳腺癌细胞生长和转移的有效药物的潜力。证据表明,枸橘苷的功效可能是通过 PI3K/AKT 通路进行调节。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
期刊最新文献
Management of Cholesteatoma: Hearing Rehabilitation. Congenital Cholesteatoma. Evaluation of Cholesteatoma. Management of Cholesteatoma: Extension Beyond Middle Ear/Mastoid. Recidivism and Recurrence.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1