{"title":"A Siah3 of relief: A role for mitophagy as a fail-safe during developmental axon pruning","authors":"Rina L. Davidson, David J. Simon","doi":"10.1126/scisignal.ads1228","DOIUrl":null,"url":null,"abstract":"<div >Developmental axon pruning is controlled by a careful balance of pro- and anti-apoptotic signals, which are activated in response to external cues to sculpt mature neuronal circuitry. In this issue of <i>Science Signaling</i>, Abraham <i>et al.</i> define a safeguard against apoptotic axon pruning and illustrate that Siah3 represses Parkin-mediated mitophagy to control the availability of axonal mitochondria that activate the pruning process.</div>","PeriodicalId":21658,"journal":{"name":"Science Signaling","volume":"17 857","pages":""},"PeriodicalIF":6.7000,"publicationDate":"2024-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science Signaling","FirstCategoryId":"99","ListUrlMain":"https://www.science.org/doi/10.1126/scisignal.ads1228","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Developmental axon pruning is controlled by a careful balance of pro- and anti-apoptotic signals, which are activated in response to external cues to sculpt mature neuronal circuitry. In this issue of Science Signaling, Abraham et al. define a safeguard against apoptotic axon pruning and illustrate that Siah3 represses Parkin-mediated mitophagy to control the availability of axonal mitochondria that activate the pruning process.
期刊介绍:
"Science Signaling" is a reputable, peer-reviewed journal dedicated to the exploration of cell communication mechanisms, offering a comprehensive view of the intricate processes that govern cellular regulation. This journal, published weekly online by the American Association for the Advancement of Science (AAAS), is a go-to resource for the latest research in cell signaling and its various facets.
The journal's scope encompasses a broad range of topics, including the study of signaling networks, synthetic biology, systems biology, and the application of these findings in drug discovery. It also delves into the computational and modeling aspects of regulatory pathways, providing insights into how cells communicate and respond to their environment.
In addition to publishing full-length articles that report on groundbreaking research, "Science Signaling" also features reviews that synthesize current knowledge in the field, focus articles that highlight specific areas of interest, and editor-written highlights that draw attention to particularly significant studies. This mix of content ensures that the journal serves as a valuable resource for both researchers and professionals looking to stay abreast of the latest advancements in cell communication science.