Innovation in viruses: fitness valley crossing, neutral landscapes, or just duplications?

IF 5.5 2区 医学 Q1 VIROLOGY Virus Evolution Pub Date : 2024-09-20 eCollection Date: 2024-01-01 DOI:10.1093/ve/veae078
Paul Banse, Santiago F Elena, Guillaume Beslon
{"title":"Innovation in viruses: fitness valley crossing, neutral landscapes, or just duplications?","authors":"Paul Banse, Santiago F Elena, Guillaume Beslon","doi":"10.1093/ve/veae078","DOIUrl":null,"url":null,"abstract":"<p><p>Viruses evolve by periods of relative stasis interleaved with sudden, rapid series of mutation fixations, known as evolutionary bursts. These bursts can be triggered by external factors, such as environmental changes, antiviral therapies, or spill-overs from reservoirs into novel host species. However, it has also been suggested that bursts may result from the intrinsic evolutionary dynamics of viruses. Indeed, bursts could be caused by fitness valley crossing, or a neutral exploration of a fitness plateau until an escape mutant is found. In order to investigate the importance of these intrinsic causes of evolutionary bursts, we used a simulation software package to perform massive evolution experiments of viral-like genomes. We tested two conditions: (i) after an external change and (ii) in a constant environment, with the latter condition guaranteeing the absence of an external triggering factor. As expected, an external change was almost systematically followed by an evolutionary burst. However, we also observed bursts in the constant environment as well, albeit much less frequently. We analyzed how many of these bursts are triggered by deleterious, quasi-neutral, or beneficial mutations and show that, while bursts can occasionally be triggered by valley crossing or traveling along neutral ridges, many of them were triggered by chromosomal rearrangements and, in particular, segmental duplications. Our results suggest that combinatorial differences between the different mutation types lead to punctuated evolutionary dynamics, with long periods of stasis occasionally interrupted by short periods of rapid evolution, akin to what is observed in virus evolution.</p>","PeriodicalId":56026,"journal":{"name":"Virus Evolution","volume":"10 1","pages":"veae078"},"PeriodicalIF":5.5000,"publicationDate":"2024-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11463231/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Virus Evolution","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1093/ve/veae078","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"VIROLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Viruses evolve by periods of relative stasis interleaved with sudden, rapid series of mutation fixations, known as evolutionary bursts. These bursts can be triggered by external factors, such as environmental changes, antiviral therapies, or spill-overs from reservoirs into novel host species. However, it has also been suggested that bursts may result from the intrinsic evolutionary dynamics of viruses. Indeed, bursts could be caused by fitness valley crossing, or a neutral exploration of a fitness plateau until an escape mutant is found. In order to investigate the importance of these intrinsic causes of evolutionary bursts, we used a simulation software package to perform massive evolution experiments of viral-like genomes. We tested two conditions: (i) after an external change and (ii) in a constant environment, with the latter condition guaranteeing the absence of an external triggering factor. As expected, an external change was almost systematically followed by an evolutionary burst. However, we also observed bursts in the constant environment as well, albeit much less frequently. We analyzed how many of these bursts are triggered by deleterious, quasi-neutral, or beneficial mutations and show that, while bursts can occasionally be triggered by valley crossing or traveling along neutral ridges, many of them were triggered by chromosomal rearrangements and, in particular, segmental duplications. Our results suggest that combinatorial differences between the different mutation types lead to punctuated evolutionary dynamics, with long periods of stasis occasionally interrupted by short periods of rapid evolution, akin to what is observed in virus evolution.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
病毒的创新:健身谷跨越、中性景观,还是仅仅是复制?
病毒在进化过程中会出现相对停滞期和突然、快速的突变固定期,即所谓的进化爆发期。这些突变可能是由外部因素引发的,如环境变化、抗病毒疗法或从病毒库溢出到新的宿主物种。不过,也有人认为,爆发可能是病毒内在进化动态的结果。事实上,突变可能是由适性谷的跨越或对适性高原的中性探索造成的,直到发现逃逸突变体。为了研究进化突变的这些内在原因的重要性,我们使用了一个模拟软件包来进行类病毒基因组的大规模进化实验。我们测试了两种情况:(i) 外部变化后;(ii) 恒定环境中,后一种情况保证没有外部触发因素。不出所料,外部变化之后几乎都会出现进化爆发。然而,我们在恒定环境中也观察到了突变,尽管频率要低得多。我们分析了这些突变中有多少是由有害、准中性或有益的突变引发的,结果表明,虽然偶尔也会因谷交叉或沿中性脊行进而引发突变,但许多突变是由染色体重排,特别是节段复制引发的。我们的研究结果表明,不同突变类型之间的组合差异导致了点状进化动态,长时间的停滞偶尔会被短时间的快速进化打断,这与病毒进化中观察到的情况类似。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Virus Evolution
Virus Evolution Immunology and Microbiology-Microbiology
CiteScore
10.50
自引率
5.70%
发文量
108
审稿时长
14 weeks
期刊介绍: Virus Evolution is a new Open Access journal focusing on the long-term evolution of viruses, viruses as a model system for studying evolutionary processes, viral molecular epidemiology and environmental virology. The aim of the journal is to provide a forum for original research papers, reviews, commentaries and a venue for in-depth discussion on the topics relevant to virus evolution.
期刊最新文献
Dimensionality reduction distills complex evolutionary relationships in seasonal influenza and SARS-CoV-2. Enhanced detection and molecular modeling of adaptive mutations in SARS-CoV-2 coding and non-coding regions using the c/µ test. Community-level variability in Bronx COVID-19 hospitalizations associated with differing population immunity during the second year of the pandemic. A phylogenetics and variant calling pipeline to support SARS-CoV-2 genomic epidemiology in the UK. Genomic epidemiology reveals the variation and transmission properties of SARS-CoV-2 in a single-source community outbreak.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1