Multivariable prediction of functional outcome after first-episode psychosis: a crossover validation approach in EUFEST and PSYSCAN.

IF 3 Q2 PSYCHIATRY Schizophrenia (Heidelberg, Germany) Pub Date : 2024-10-07 DOI:10.1038/s41537-024-00505-w
Margot I E Slot, Maria F Urquijo Castro, Inge Winter-van Rossum, Hendrika H van Hell, Dominic Dwyer, Paola Dazzan, Arija Maat, Lieuwe De Haan, Benedicto Crespo-Facorro, Birte Y Glenthøj, Stephen M Lawrie, Colm McDonald, Oliver Gruber, Thérèse van Amelsvoort, Celso Arango, Tilo Kircher, Barnaby Nelson, Silvana Galderisi, Mark Weiser, Gabriele Sachs, Matthias Kirschner, W Wolfgang Fleischhacker, Philip McGuire, Nikolaos Koutsouleris, René S Kahn
{"title":"Multivariable prediction of functional outcome after first-episode psychosis: a crossover validation approach in EUFEST and PSYSCAN.","authors":"Margot I E Slot, Maria F Urquijo Castro, Inge Winter-van Rossum, Hendrika H van Hell, Dominic Dwyer, Paola Dazzan, Arija Maat, Lieuwe De Haan, Benedicto Crespo-Facorro, Birte Y Glenthøj, Stephen M Lawrie, Colm McDonald, Oliver Gruber, Thérèse van Amelsvoort, Celso Arango, Tilo Kircher, Barnaby Nelson, Silvana Galderisi, Mark Weiser, Gabriele Sachs, Matthias Kirschner, W Wolfgang Fleischhacker, Philip McGuire, Nikolaos Koutsouleris, René S Kahn","doi":"10.1038/s41537-024-00505-w","DOIUrl":null,"url":null,"abstract":"<p><p>Several multivariate prognostic models have been published to predict outcomes in patients with first episode psychosis (FEP), but it remains unclear whether those predictions generalize to independent populations. Using a subset of demographic and clinical baseline predictors, we aimed to develop and externally validate different models predicting functional outcome after a FEP in the context of a schizophrenia-spectrum disorder (FES), based on a previously published cross-validation and machine learning pipeline. A crossover validation approach was adopted in two large, international cohorts (EUFEST, n = 338, and the PSYSCAN FES cohort, n = 226). Scores on the Global Assessment of Functioning scale (GAF) at 12 month follow-up were dichotomized to differentiate between poor (GAF current < 65) and good outcome (GAF current ≥ 65). Pooled non-linear support vector machine (SVM) classifiers trained on the separate cohorts identified patients with a poor outcome with cross-validated balanced accuracies (BAC) of 65-66%, but BAC dropped substantially when the models were applied to patients from a different FES cohort (BAC = 50-56%). A leave-site-out analysis on the merged sample yielded better performance (BAC = 72%), highlighting the effect of combining data from different study designs to overcome calibration issues and improve model transportability. In conclusion, our results indicate that validation of prediction models in an independent sample is essential in assessing the true value of the model. Future external validation studies, as well as attempts to harmonize data collection across studies, are recommended.</p>","PeriodicalId":74758,"journal":{"name":"Schizophrenia (Heidelberg, Germany)","volume":"10 1","pages":"89"},"PeriodicalIF":3.0000,"publicationDate":"2024-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11458815/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Schizophrenia (Heidelberg, Germany)","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1038/s41537-024-00505-w","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PSYCHIATRY","Score":null,"Total":0}
引用次数: 0

Abstract

Several multivariate prognostic models have been published to predict outcomes in patients with first episode psychosis (FEP), but it remains unclear whether those predictions generalize to independent populations. Using a subset of demographic and clinical baseline predictors, we aimed to develop and externally validate different models predicting functional outcome after a FEP in the context of a schizophrenia-spectrum disorder (FES), based on a previously published cross-validation and machine learning pipeline. A crossover validation approach was adopted in two large, international cohorts (EUFEST, n = 338, and the PSYSCAN FES cohort, n = 226). Scores on the Global Assessment of Functioning scale (GAF) at 12 month follow-up were dichotomized to differentiate between poor (GAF current < 65) and good outcome (GAF current ≥ 65). Pooled non-linear support vector machine (SVM) classifiers trained on the separate cohorts identified patients with a poor outcome with cross-validated balanced accuracies (BAC) of 65-66%, but BAC dropped substantially when the models were applied to patients from a different FES cohort (BAC = 50-56%). A leave-site-out analysis on the merged sample yielded better performance (BAC = 72%), highlighting the effect of combining data from different study designs to overcome calibration issues and improve model transportability. In conclusion, our results indicate that validation of prediction models in an independent sample is essential in assessing the true value of the model. Future external validation studies, as well as attempts to harmonize data collection across studies, are recommended.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
首发精神病后功能预后的多变量预测:EUFEST 和 PSYSCAN 的交叉验证方法。
已有多个多变量预后模型用于预测首发精神病(FEP)患者的预后,但目前仍不清楚这些预测是否适用于独立人群。我们利用人口统计学和临床基线预测因子子集,以先前发表的交叉验证和机器学习管道为基础,旨在开发并从外部验证不同的模型,以预测精神分裂症谱系障碍(FES)首次发作精神病患者的功能性预后。在两个大型国际队列(EUFEST,n = 338;PSYSCAN FES队列,n = 226)中采用了交叉验证方法。对随访 12 个月的全球功能评估量表(GAF)得分进行二分法,以区分功能差(GAF current
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Individuals with psychosis receive less electric field strength during transcranial direct current stimulation compared to healthy controls. Onset age moderates the associations between neutrophil-to-lymphocyte ratio and clinical symptoms in first-episode patients with schizophrenia. Author Correction: Brain structural associations of syntactic complexity and diversity across schizophrenia spectrum and major depressive disorders, and healthy controls. Meta-analyses of epigenetic age acceleration and GrimAge components of schizophrenia or first-episode psychosis. Inferring social signals from the eyes in male schizophrenia.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1