Elucidating metal–organic framework structures using synchrotron serial crystallography†

IF 2.6 3区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY CrystEngComm Pub Date : 2024-09-20 DOI:10.1039/D4CE00735B
Elke De Zitter, David Perl, Martin Savko, Daniel W. Paley, Alexander J. Thom, Damien Jeangerard, Aaron S. Brewster, Antoine Tissot, Christian Serre and William Shepard
{"title":"Elucidating metal–organic framework structures using synchrotron serial crystallography†","authors":"Elke De Zitter, David Perl, Martin Savko, Daniel W. Paley, Alexander J. Thom, Damien Jeangerard, Aaron S. Brewster, Antoine Tissot, Christian Serre and William Shepard","doi":"10.1039/D4CE00735B","DOIUrl":null,"url":null,"abstract":"<p >Metal organic frameworks (MOFs) are porous crystalline materials that display a wide variety of physical and chemical properties. Their single crystal structure determination is often challenging because in most cases micro- or nano-sized crystals spontaneously form upon MOF synthesis, which cannot be recrystallized. The production of larger single crystals for structure determination involves optimizing, and thus modifying, the conditions of synthesis, in which success cannot be guaranteed. Failure to produce crystals suitable for single-crystal X-ray diffraction leaves the 3D structure of the MOF compound unknown, and scientists must resort to more challenging structure solution methods based on X-ray powder or electron diffraction data. These laborious tasks can be avoided by using serial crystallography techniques which merge data collected on many micro-crystals. Here, we report the application of three synchrotron serial crystallography methods. We call these “mesh”, “grid” and “mesh&amp;collect” scans. “Still” images (no rotation) are collected in the mesh scan approach, whereas small rotational wedges are collected in the grid scan method. The third protocol, mesh&amp;collect, combines the acquisition of still images and rotational wedges. Using these means, we determine the <em>ab initio</em> structure of benchmark MOFs, MIL-100(Fe) and ZIF-8, that differ largely in unit cell size. These methods are expected to be widely applicable and facilitate structure determination of many MOF microcrystalline systems.</p>","PeriodicalId":70,"journal":{"name":"CrystEngComm","volume":" 39","pages":" 5644-5654"},"PeriodicalIF":2.6000,"publicationDate":"2024-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/ce/d4ce00735b?page=search","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"CrystEngComm","FirstCategoryId":"92","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/ce/d4ce00735b","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Metal organic frameworks (MOFs) are porous crystalline materials that display a wide variety of physical and chemical properties. Their single crystal structure determination is often challenging because in most cases micro- or nano-sized crystals spontaneously form upon MOF synthesis, which cannot be recrystallized. The production of larger single crystals for structure determination involves optimizing, and thus modifying, the conditions of synthesis, in which success cannot be guaranteed. Failure to produce crystals suitable for single-crystal X-ray diffraction leaves the 3D structure of the MOF compound unknown, and scientists must resort to more challenging structure solution methods based on X-ray powder or electron diffraction data. These laborious tasks can be avoided by using serial crystallography techniques which merge data collected on many micro-crystals. Here, we report the application of three synchrotron serial crystallography methods. We call these “mesh”, “grid” and “mesh&collect” scans. “Still” images (no rotation) are collected in the mesh scan approach, whereas small rotational wedges are collected in the grid scan method. The third protocol, mesh&collect, combines the acquisition of still images and rotational wedges. Using these means, we determine the ab initio structure of benchmark MOFs, MIL-100(Fe) and ZIF-8, that differ largely in unit cell size. These methods are expected to be widely applicable and facilitate structure determination of many MOF microcrystalline systems.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用同步辐射串行晶体学阐明金属有机框架结构†。
金属有机框架(MOFs)是一种多孔晶体材料,具有多种物理和化学特性。其单晶结构的测定通常具有挑战性,因为在大多数情况下,MOF 合成时会自发形成微小或纳米尺寸的晶体,这些晶体无法再结晶。要制备较大的单晶体以进行结构测定,就必须优化合成条件,从而改变合成条件,而在这种情况下,无法保证成功。如果不能制备出适合单晶 X 射线衍射的晶体,MOF 化合物的三维结构就会变得未知,科学家就必须根据 X 射线粉末或电子衍射数据,采用更具挑战性的结构求解方法。使用序列晶体学技术可以避免这些费力的工作,因为这种技术可以合并从许多微晶体上收集到的数据。在此,我们报告了三种同步辐射串行晶体学方法的应用。我们称之为 "网格"、"网格 "和 "网格&收集 "扫描。网格扫描方法收集的是 "静止 "图像(无旋转),而网格扫描方法收集的是小的旋转楔形图像。第三种方案,即网格&收集,结合了静态图像和旋转楔形图像的采集。利用这些方法,我们确定了基准 MOF(MIL-100(Fe)和 ZIF-8)的 ab initio 结构,它们在单胞尺寸上存在很大差异。这些方法预计将广泛应用于许多 MOF 微晶体系的结构测定。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CrystEngComm
CrystEngComm 化学-化学综合
CiteScore
5.50
自引率
9.70%
发文量
747
审稿时长
1.7 months
期刊介绍: Design and understanding of solid-state and crystalline materials
期刊最新文献
Back cover Back cover Back cover Optical properties of [MMim]2[CuI3] crystals with 0D single-core trigonal planar structures† High-density Nb:YTaO4 single crystals for X-ray scintillation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1