Zizhang Zhao , Jinwei Dong , Geli Zhang , Jilin Yang , Ruoqi Liu , Bingfang Wu , Xiangming Xiao
{"title":"Improved phenology-based rice mapping algorithm by integrating optical and radar data","authors":"Zizhang Zhao , Jinwei Dong , Geli Zhang , Jilin Yang , Ruoqi Liu , Bingfang Wu , Xiangming Xiao","doi":"10.1016/j.rse.2024.114460","DOIUrl":null,"url":null,"abstract":"<div><div>Information on rice planting areas is critically important for food and water security, as well as for adapting to climate change. Mapping rice globally remains challenging due to the diverse climatic conditions and various rice cropping systems worldwide. Synthetic Aperture Radar (SAR) data, which is immune to climatic conditions, plays a vital role in rice mapping in cloudy, rainy, low-latitude regions but it suffers from commission errors in high-latitude regions. Conversely, optical data performs well in high-latitude regions due to its high observation frequency and less cloud contamination but faces significant omission errors in low-latitude regions. An effective integrated method that combines both data types is key to global rice mapping. Here, we propose a novel adaptive rice mapping framework named Rice-Sentinel that combines Sentinel-1 and Sentinel-2 data. First, we extracted key phenological phases of rice (e.g., the flooding and transplanting phase and the rapid growth phase), by analyzing the characteristic V-shaped changes in the Sentinel-1 VH curve. Second, we identified potential flooding signals in rice pixels by integrating the VH time series from Sentinel-1 with the Land Surface Water Index (LSWI) and Enhanced Vegetation Index (EVI) from Sentinel-2, utilizing the generated phenology phases. Third, the rapid growth signals of rice following its flooding phase were identified using Sentinel-2 data. Finally, rice fields were identified by integrating flooding and rapid growth signals. The resultant rice maps in six different case regions of the world (Northeast and South China, California, USA, Mekong Delta of Vietnam, Sakata City in Japan, and Mali in Africa) showed overall accuracies over 90 % and F1 scores over 0.91, outperforming the existing methods and products. This algorithm combines the strengths of both optical and SAR time series data and leverages biophysical principles to generate robust rice maps without relying on any prior ground truth samples. It is well-positioned for global applications and is expected to contribute to global rice monitoring efforts.</div></div>","PeriodicalId":417,"journal":{"name":"Remote Sensing of Environment","volume":"315 ","pages":"Article 114460"},"PeriodicalIF":11.1000,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Remote Sensing of Environment","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0034425724004863","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Information on rice planting areas is critically important for food and water security, as well as for adapting to climate change. Mapping rice globally remains challenging due to the diverse climatic conditions and various rice cropping systems worldwide. Synthetic Aperture Radar (SAR) data, which is immune to climatic conditions, plays a vital role in rice mapping in cloudy, rainy, low-latitude regions but it suffers from commission errors in high-latitude regions. Conversely, optical data performs well in high-latitude regions due to its high observation frequency and less cloud contamination but faces significant omission errors in low-latitude regions. An effective integrated method that combines both data types is key to global rice mapping. Here, we propose a novel adaptive rice mapping framework named Rice-Sentinel that combines Sentinel-1 and Sentinel-2 data. First, we extracted key phenological phases of rice (e.g., the flooding and transplanting phase and the rapid growth phase), by analyzing the characteristic V-shaped changes in the Sentinel-1 VH curve. Second, we identified potential flooding signals in rice pixels by integrating the VH time series from Sentinel-1 with the Land Surface Water Index (LSWI) and Enhanced Vegetation Index (EVI) from Sentinel-2, utilizing the generated phenology phases. Third, the rapid growth signals of rice following its flooding phase were identified using Sentinel-2 data. Finally, rice fields were identified by integrating flooding and rapid growth signals. The resultant rice maps in six different case regions of the world (Northeast and South China, California, USA, Mekong Delta of Vietnam, Sakata City in Japan, and Mali in Africa) showed overall accuracies over 90 % and F1 scores over 0.91, outperforming the existing methods and products. This algorithm combines the strengths of both optical and SAR time series data and leverages biophysical principles to generate robust rice maps without relying on any prior ground truth samples. It is well-positioned for global applications and is expected to contribute to global rice monitoring efforts.
期刊介绍:
Remote Sensing of Environment (RSE) serves the Earth observation community by disseminating results on the theory, science, applications, and technology that contribute to advancing the field of remote sensing. With a thoroughly interdisciplinary approach, RSE encompasses terrestrial, oceanic, and atmospheric sensing.
The journal emphasizes biophysical and quantitative approaches to remote sensing at local to global scales, covering a diverse range of applications and techniques.
RSE serves as a vital platform for the exchange of knowledge and advancements in the dynamic field of remote sensing.