{"title":"Enhancing Bug-Inducing Commit Identification: A Fine-Grained Semantic Analysis Approach","authors":"Lingxiao Tang;Chao Ni;Qiao Huang;Lingfeng Bao","doi":"10.1109/TSE.2024.3468296","DOIUrl":null,"url":null,"abstract":"The SZZ algorithm and its variants have been extensively utilized for identifying bug-inducing commits based on bug-fixing commits. However, these algorithms face challenges when there are no deletion lines in the bug-fixing commit. Previous studies have attempted to address this issue by tracing back all lines in the block that encapsulates the added lines. However, this method is too coarse-grained and suffers from low precision. To address this issue, we propose a novel method in this paper called \n<sc>Sem-SZZ</small>\n, which is based on fine-grained semantic analysis. Initially, we observe that a significant number of bug-inducing commits can be identified by tracing back the unmodified lines near added lines, resulting in improved precision and F1-score. Building on this observation, we conduct a more fine-grained semantic analysis. We begin by performing program slicing to extract the program part near the added lines. Subsequently, we compare the program's states between the previous version and the current version, focusing on data flow and control flow differences based on the extracted program part. Finally, we extract statements contributing to the bug based on these differences and utilize them to locate bug-inducing commits. We also extend our approach to fit the scenario where the bug-fixing commits contain deleted lines. Experimental results demonstrate that \n<sc>Sem-SZZ</small>\n outperforms the state-of-the-art methods in identifying bug-inducing commits, regardless of whether the bug-fixing commit contains deleted lines.","PeriodicalId":13324,"journal":{"name":"IEEE Transactions on Software Engineering","volume":"50 11","pages":"3037-3052"},"PeriodicalIF":6.5000,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Software Engineering","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10711218/","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 0
Abstract
The SZZ algorithm and its variants have been extensively utilized for identifying bug-inducing commits based on bug-fixing commits. However, these algorithms face challenges when there are no deletion lines in the bug-fixing commit. Previous studies have attempted to address this issue by tracing back all lines in the block that encapsulates the added lines. However, this method is too coarse-grained and suffers from low precision. To address this issue, we propose a novel method in this paper called
Sem-SZZ
, which is based on fine-grained semantic analysis. Initially, we observe that a significant number of bug-inducing commits can be identified by tracing back the unmodified lines near added lines, resulting in improved precision and F1-score. Building on this observation, we conduct a more fine-grained semantic analysis. We begin by performing program slicing to extract the program part near the added lines. Subsequently, we compare the program's states between the previous version and the current version, focusing on data flow and control flow differences based on the extracted program part. Finally, we extract statements contributing to the bug based on these differences and utilize them to locate bug-inducing commits. We also extend our approach to fit the scenario where the bug-fixing commits contain deleted lines. Experimental results demonstrate that
Sem-SZZ
outperforms the state-of-the-art methods in identifying bug-inducing commits, regardless of whether the bug-fixing commit contains deleted lines.
期刊介绍:
IEEE Transactions on Software Engineering seeks contributions comprising well-defined theoretical results and empirical studies with potential impacts on software construction, analysis, or management. The scope of this Transactions extends from fundamental mechanisms to the development of principles and their application in specific environments. Specific topic areas include:
a) Development and maintenance methods and models: Techniques and principles for specifying, designing, and implementing software systems, encompassing notations and process models.
b) Assessment methods: Software tests, validation, reliability models, test and diagnosis procedures, software redundancy, design for error control, and measurements and evaluation of process and product aspects.
c) Software project management: Productivity factors, cost models, schedule and organizational issues, and standards.
d) Tools and environments: Specific tools, integrated tool environments, associated architectures, databases, and parallel and distributed processing issues.
e) System issues: Hardware-software trade-offs.
f) State-of-the-art surveys: Syntheses and comprehensive reviews of the historical development within specific areas of interest.