Pyrrolo[2,3-d]pyrimidines as potential kinase inhibitors in cancer drug discovery: A critical review

IF 4.5 2区 医学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Bioorganic Chemistry Pub Date : 2024-10-04 DOI:10.1016/j.bioorg.2024.107867
Malyala Sai Madhurya , Vanashree Thakur , Sowmya Dastari, Nagula Shankaraiah
{"title":"Pyrrolo[2,3-d]pyrimidines as potential kinase inhibitors in cancer drug discovery: A critical review","authors":"Malyala Sai Madhurya ,&nbsp;Vanashree Thakur ,&nbsp;Sowmya Dastari,&nbsp;Nagula Shankaraiah","doi":"10.1016/j.bioorg.2024.107867","DOIUrl":null,"url":null,"abstract":"<div><div>Pyrrolo[2,3-<em>d</em>]pyrimidine-based kinase inhibitors have emerged as an important class of targeted therapeutics to combat various types of cancer. The distinctive structural feature of pyrrolopyrimidine ring system offers an adaptable platform for designing potent inhibitors of various kinases, crucial in regulating cellular processes. The deazapurine framework inherent to pyrrolopyrimidines bears a conspicuous resemblance to adenine, the natural ligand ATP. The structural mimicry enhances their appeal as potent inhibitors of key kinases. This review reconnoitres the intricate process of designing and developing pyrrolopyrimidine based derivatives, accentuating their structural diversity and the strategic modifications employed to enhance selectivity, potency, and pharmacokinetic properties. The discussion delves into medicinal chemistry strategies, highlighting successful examples that have been progressed to clinical evaluation. Furthermore, the review highlights the promise of pyrrolopyrimidine scaffolds in revolutionizing targeted cancer therapy and provides a pioneering perspective on future directions.</div></div>","PeriodicalId":257,"journal":{"name":"Bioorganic Chemistry","volume":"153 ","pages":"Article 107867"},"PeriodicalIF":4.5000,"publicationDate":"2024-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioorganic Chemistry","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0045206824007727","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Pyrrolo[2,3-d]pyrimidine-based kinase inhibitors have emerged as an important class of targeted therapeutics to combat various types of cancer. The distinctive structural feature of pyrrolopyrimidine ring system offers an adaptable platform for designing potent inhibitors of various kinases, crucial in regulating cellular processes. The deazapurine framework inherent to pyrrolopyrimidines bears a conspicuous resemblance to adenine, the natural ligand ATP. The structural mimicry enhances their appeal as potent inhibitors of key kinases. This review reconnoitres the intricate process of designing and developing pyrrolopyrimidine based derivatives, accentuating their structural diversity and the strategic modifications employed to enhance selectivity, potency, and pharmacokinetic properties. The discussion delves into medicinal chemistry strategies, highlighting successful examples that have been progressed to clinical evaluation. Furthermore, the review highlights the promise of pyrrolopyrimidine scaffolds in revolutionizing targeted cancer therapy and provides a pioneering perspective on future directions.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
作为潜在激酶抑制剂的吡咯并[2,3-d]嘧啶类抗癌药物发现:重要综述。
基于吡咯并[2,3-d]嘧啶的激酶抑制剂已成为抗击各类癌症的一类重要靶向治疗药物。吡咯嘧啶环系统独特的结构特征为设计对调节细胞过程至关重要的各种激酶的强效抑制剂提供了一个适应性很强的平台。吡咯并嘧啶固有的脱氮嘌呤框架与天然配体 ATP 的腺嘌呤十分相似。这种结构拟态增强了它们作为关键激酶强效抑制剂的吸引力。本综述回顾了设计和开发吡咯并嘧啶类衍生物的复杂过程,强调了其结构的多样性以及为提高选择性、药效和药代动力学特性而采用的策略性修饰。讨论深入探讨了药物化学策略,重点介绍了已进入临床评估的成功案例。此外,该综述还强调了吡咯并嘧啶支架在革新癌症靶向治疗方面的前景,并对未来的发展方向提供了开拓性的视角。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Bioorganic Chemistry
Bioorganic Chemistry 生物-生化与分子生物学
CiteScore
9.70
自引率
3.90%
发文量
679
审稿时长
31 days
期刊介绍: Bioorganic Chemistry publishes research that addresses biological questions at the molecular level, using organic chemistry and principles of physical organic chemistry. The scope of the journal covers a range of topics at the organic chemistry-biology interface, including: enzyme catalysis, biotransformation and enzyme inhibition; nucleic acids chemistry; medicinal chemistry; natural product chemistry, natural product synthesis and natural product biosynthesis; antimicrobial agents; lipid and peptide chemistry; biophysical chemistry; biological probes; bio-orthogonal chemistry and biomimetic chemistry. For manuscripts dealing with synthetic bioactive compounds, the Journal requires that the molecular target of the compounds described must be known, and must be demonstrated experimentally in the manuscript. For studies involving natural products, if the molecular target is unknown, some data beyond simple cell-based toxicity studies to provide insight into the mechanism of action is required. Studies supported by molecular docking are welcome, but must be supported by experimental data. The Journal does not consider manuscripts that are purely theoretical or computational in nature. The Journal publishes regular articles, short communications and reviews. Reviews are normally invited by Editors or Editorial Board members. Authors of unsolicited reviews should first contact an Editor or Editorial Board member to determine whether the proposed article is within the scope of the Journal.
期刊最新文献
Editorial Board Issue TOC Decoding structural determinants of aryl hydrocarbon receptor antagonism by monoterpenoids 7S,15R-Stereoisomer of phenylethylamino derivative of colchicine exhibits potent in-vitro and in-vivo anti-cancer activity against prostate Cancer: Assessing the impact of stereochemistry on biological activity Novel (−)-eigallocatechin-3-gallate-erlotinib conjugates via triazole rings inhibit non-small cell lung cancer cells through EGFR signaling pathway
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1