Michał Antoszczak, Magdalena Mielczarek-Puta, Marta Struga, Adam Huczyński
{"title":"Urea and Thiourea Derivatives of Salinomycin as Agents Targeting Malignant Colon Cancer Cells.","authors":"Michał Antoszczak, Magdalena Mielczarek-Puta, Marta Struga, Adam Huczyński","doi":"10.2174/0118715206322603241002064435","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Since it was discovered that a natural polyether ionophore called salinomycin (SAL) selectively inhibits human cancer cells, the scientific world has been paying special attention to this compound. It has been studied for nearly 15 years.</p><p><strong>Objective: </strong>Thus, a very interesting research direction is the chemical modification of SAL structure, which could give more biologically active agents.</p><p><strong>Methods: </strong>We evaluated the anticancer activity of (thio)urea analogues class of C20-epi-aminosalinomycin (compound 3b). The studies covered the generation of reactive oxygen species (ROS), proapoptotic activity, cytotoxic activity, and lipid peroxidation in vitro.</p><p><strong>Results: </strong>Thioureas 5a‒5d showed antiproliferative activity against selected human colon cancer cell lines greater than that of chemically unmodified SAL, with a 2~10-fold higher potency towards a metastatic variant of colon cancer cells (SW620). Mechanistically, SAL derivatives showed pro-apoptotic activity in primary colon cancer cells and induced the production of reactive oxygen species (ROS) in these cells. In SW620 cells, SAL derivatives increased lipid peroxidation with a weak effect on apoptosis and low ROS formation with cytotoxic effects followed by cytostatic ones, suggesting different modes of action of the compounds against primary and metastatic colon cancer cells.</p><p><strong>Conclusion: </strong>The results of this study suggested that urea and thiourea derivatives of SAL provide promising leads for the rational development of new anticancer active agents.</p>","PeriodicalId":7934,"journal":{"name":"Anti-cancer agents in medicinal chemistry","volume":" ","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Anti-cancer agents in medicinal chemistry","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2174/0118715206322603241002064435","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Since it was discovered that a natural polyether ionophore called salinomycin (SAL) selectively inhibits human cancer cells, the scientific world has been paying special attention to this compound. It has been studied for nearly 15 years.
Objective: Thus, a very interesting research direction is the chemical modification of SAL structure, which could give more biologically active agents.
Methods: We evaluated the anticancer activity of (thio)urea analogues class of C20-epi-aminosalinomycin (compound 3b). The studies covered the generation of reactive oxygen species (ROS), proapoptotic activity, cytotoxic activity, and lipid peroxidation in vitro.
Results: Thioureas 5a‒5d showed antiproliferative activity against selected human colon cancer cell lines greater than that of chemically unmodified SAL, with a 2~10-fold higher potency towards a metastatic variant of colon cancer cells (SW620). Mechanistically, SAL derivatives showed pro-apoptotic activity in primary colon cancer cells and induced the production of reactive oxygen species (ROS) in these cells. In SW620 cells, SAL derivatives increased lipid peroxidation with a weak effect on apoptosis and low ROS formation with cytotoxic effects followed by cytostatic ones, suggesting different modes of action of the compounds against primary and metastatic colon cancer cells.
Conclusion: The results of this study suggested that urea and thiourea derivatives of SAL provide promising leads for the rational development of new anticancer active agents.
期刊介绍:
Formerly: Current Medicinal Chemistry - Anti-Cancer Agents.
Anti-Cancer Agents in Medicinal Chemistry aims to cover all the latest and outstanding developments in medicinal chemistry and rational drug design for the discovery of anti-cancer agents.
Each issue contains a series of timely in-depth reviews and guest edited issues written by leaders in the field covering a range of current topics in cancer medicinal chemistry. The journal only considers high quality research papers for publication.
Anti-Cancer Agents in Medicinal Chemistry is an essential journal for every medicinal chemist who wishes to be kept informed and up-to-date with the latest and most important developments in cancer drug discovery.