Tian Xia, Lian Meng, Guixuan Xu, Hao Sun, Hao Chen
{"title":"TRIM33 promotes glycolysis through regulating P53 K48-linked ubiquitination to promote esophageal squamous cell carcinoma growth.","authors":"Tian Xia, Lian Meng, Guixuan Xu, Hao Sun, Hao Chen","doi":"10.1038/s41419-024-07137-z","DOIUrl":null,"url":null,"abstract":"<p><p>Esophageal squamous cell carcinoma (ESCC) is a common fatal malignant tumor of the digestive tract; however, its pathogenic mechanism is unknown and lacks specific molecular diagnosis and treatment. Therefore, it is particularly important to identify new tumor biomarkers to enhance the early diagnosis and molecular-targeted therapy of ESCC. Here, we found that the E3 ubiquitin ligase Tripartitemotif-containing33 (TRIM33) is highly expressed in ESCC tissues and cell lines, and is associated with adverse clinical outcomes. We determined that TRIM33 drives aerobic glycolysis to promote tumor growth in vivo and in vitro. In terms of mechanism, TRIM33 binds to p53 to inhibit its stability and promote the expression of downstream glycolysis target genes GLUT1, HK2, PKM2, and LDHA. In addition, TRIM33 promotes the polyubiquitination of P53 K48-linked and proteasome degradation. Further studies have shown that the K351 site of P53 is the key site mediating the ubiquitination of P53 K48-linked to promote aerobic glycolysis in ESCC and tumor cell growth. Our results reveal that the TRIM33-P53 signal axis regulates glycolysis during ESCC and may provide a new perspective for the diagnosis and treatment of ESCC.</p>","PeriodicalId":9734,"journal":{"name":"Cell Death & Disease","volume":null,"pages":null},"PeriodicalIF":8.1000,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11467421/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Death & Disease","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s41419-024-07137-z","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Esophageal squamous cell carcinoma (ESCC) is a common fatal malignant tumor of the digestive tract; however, its pathogenic mechanism is unknown and lacks specific molecular diagnosis and treatment. Therefore, it is particularly important to identify new tumor biomarkers to enhance the early diagnosis and molecular-targeted therapy of ESCC. Here, we found that the E3 ubiquitin ligase Tripartitemotif-containing33 (TRIM33) is highly expressed in ESCC tissues and cell lines, and is associated with adverse clinical outcomes. We determined that TRIM33 drives aerobic glycolysis to promote tumor growth in vivo and in vitro. In terms of mechanism, TRIM33 binds to p53 to inhibit its stability and promote the expression of downstream glycolysis target genes GLUT1, HK2, PKM2, and LDHA. In addition, TRIM33 promotes the polyubiquitination of P53 K48-linked and proteasome degradation. Further studies have shown that the K351 site of P53 is the key site mediating the ubiquitination of P53 K48-linked to promote aerobic glycolysis in ESCC and tumor cell growth. Our results reveal that the TRIM33-P53 signal axis regulates glycolysis during ESCC and may provide a new perspective for the diagnosis and treatment of ESCC.
期刊介绍:
Brought to readers by the editorial team of Cell Death & Differentiation, Cell Death & Disease is an online peer-reviewed journal specializing in translational cell death research. It covers a wide range of topics in experimental and internal medicine, including cancer, immunity, neuroscience, and now cancer metabolism.
Cell Death & Disease seeks to encompass the breadth of translational implications of cell death, and topics of particular concentration will include, but are not limited to, the following:
Experimental medicine
Cancer
Immunity
Internal medicine
Neuroscience
Cancer metabolism