Ziyi Ding , Dong Wang , Shilei Zhang , Xinyuan Yang , Meng Xu , Weihang Li , Quan Shi , Bo Gao , Yongchun Wang , Ming Yan
{"title":"Role and mechanism of histone demethylase PHF8 in weightlessness osteoporosis","authors":"Ziyi Ding , Dong Wang , Shilei Zhang , Xinyuan Yang , Meng Xu , Weihang Li , Quan Shi , Bo Gao , Yongchun Wang , Ming Yan","doi":"10.1016/j.yexcr.2024.114270","DOIUrl":null,"url":null,"abstract":"<div><div>Weightlessness osteoporosis, which progresses continuously and has limited protective effects, has become one of the major problems that need to be solved in manned spaceflight. Our study aims to investigate the regulatory role of PHF8 in disuse osteoporosis by observing the expression of PHF8 in bone marrow mesenchymal stem cells (BMSCs) under simulated weightlessness conditions. Therefore, we used the model of ground-based microgravity simulated by disuse osteoporosis patients and tail suspension in mice to simulate microgravity in vivo, and measured the expression of PHF8 in bone tissue. Subsequently, we used the 2D gyroscope to simulate the weightless effect on bone marrow mesenchymal stem cells. In the weightless condition, we detected the proliferation, apoptosis, osteogenesis, and osteogenic differentiation functions of BMSCs. We also detected the expression of osteogenic-related transcription factors after knocking down and overexpressing PHF8. Our results show that the weightless effect can inhibit the proliferation, osteogenesis, and osteogenic differentiation functions of BMSCs, while enhancing their apoptosis; and overexpression of PHF8 can partially alleviate the osteoporosis caused by simulated weightlessness, providing new ideas and clues for potential drug targets to prevent weightlessness and disuse osteoporosis.</div></div>","PeriodicalId":12227,"journal":{"name":"Experimental cell research","volume":"442 2","pages":"Article 114270"},"PeriodicalIF":3.3000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Experimental cell research","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0014482724003616","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Weightlessness osteoporosis, which progresses continuously and has limited protective effects, has become one of the major problems that need to be solved in manned spaceflight. Our study aims to investigate the regulatory role of PHF8 in disuse osteoporosis by observing the expression of PHF8 in bone marrow mesenchymal stem cells (BMSCs) under simulated weightlessness conditions. Therefore, we used the model of ground-based microgravity simulated by disuse osteoporosis patients and tail suspension in mice to simulate microgravity in vivo, and measured the expression of PHF8 in bone tissue. Subsequently, we used the 2D gyroscope to simulate the weightless effect on bone marrow mesenchymal stem cells. In the weightless condition, we detected the proliferation, apoptosis, osteogenesis, and osteogenic differentiation functions of BMSCs. We also detected the expression of osteogenic-related transcription factors after knocking down and overexpressing PHF8. Our results show that the weightless effect can inhibit the proliferation, osteogenesis, and osteogenic differentiation functions of BMSCs, while enhancing their apoptosis; and overexpression of PHF8 can partially alleviate the osteoporosis caused by simulated weightlessness, providing new ideas and clues for potential drug targets to prevent weightlessness and disuse osteoporosis.
期刊介绍:
Our scope includes but is not limited to areas such as: Chromosome biology; Chromatin and epigenetics; DNA repair; Gene regulation; Nuclear import-export; RNA processing; Non-coding RNAs; Organelle biology; The cytoskeleton; Intracellular trafficking; Cell-cell and cell-matrix interactions; Cell motility and migration; Cell proliferation; Cellular differentiation; Signal transduction; Programmed cell death.