The myoarchitecture of the vertebrate cardiac ventricles: evolution and classification.

IF 2.8 2区 生物学 Q2 BIOLOGY Journal of Experimental Biology Pub Date : 2024-10-15 Epub Date: 2024-10-11 DOI:10.1242/jeb.247441
Miguel A López-Unzu, María Teresa Soto-Navarrete, Valentín Sans-Coma, Borja Fernández, Ana Carmen Durán
{"title":"The myoarchitecture of the vertebrate cardiac ventricles: evolution and classification.","authors":"Miguel A López-Unzu, María Teresa Soto-Navarrete, Valentín Sans-Coma, Borja Fernández, Ana Carmen Durán","doi":"10.1242/jeb.247441","DOIUrl":null,"url":null,"abstract":"<p><p>The ventricle of the vertebrate heart is the main segment of the cardiac outflow region. Compared with other cardiac components, it shows remarkable histomorphological variation among different animal groups. This variation is especially apparent in the myocardium, which is generally classified into three main types: trabeculated, compact and mixed. The trabeculated or 'spongy' myocardium is characterized by the existence of trabeculae and deep recesses or intertrabecular spaces, lined by the endocardium. The compact type is composed of condensed myocardial fibers, with almost no trabeculated layer. The mixed type consists of an outer compact layer and an inner trabeculated layer. Among vertebrates, fishes show a great diversity of myocardial types. On this basis, the ventricular myoarchitecture has been categorized into four groups of varying complexity. This classification is made according to (i) the proportion of the two types of myocardium, trabeculated versus compact, and (ii) the vascularization of the heart wall. Here, we review the morphogenetic mechanisms that give rise to the different ventricular myoarchitecture in gnathostomes (i.e. jawed vertebrates) with special emphasis on the diversity of the ventricular myocardium throughout the phylogeny of ancient actinopterygians and teleosts. Finally, we propose that the classification of the ventricular myoarchitecture should be reconsidered, given that the degrees of myocardial compactness on which the current classification system is based do not constitute discrete states, but an anatomical continuum.</p>","PeriodicalId":15786,"journal":{"name":"Journal of Experimental Biology","volume":null,"pages":null},"PeriodicalIF":2.8000,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Experimental Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1242/jeb.247441","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/11 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The ventricle of the vertebrate heart is the main segment of the cardiac outflow region. Compared with other cardiac components, it shows remarkable histomorphological variation among different animal groups. This variation is especially apparent in the myocardium, which is generally classified into three main types: trabeculated, compact and mixed. The trabeculated or 'spongy' myocardium is characterized by the existence of trabeculae and deep recesses or intertrabecular spaces, lined by the endocardium. The compact type is composed of condensed myocardial fibers, with almost no trabeculated layer. The mixed type consists of an outer compact layer and an inner trabeculated layer. Among vertebrates, fishes show a great diversity of myocardial types. On this basis, the ventricular myoarchitecture has been categorized into four groups of varying complexity. This classification is made according to (i) the proportion of the two types of myocardium, trabeculated versus compact, and (ii) the vascularization of the heart wall. Here, we review the morphogenetic mechanisms that give rise to the different ventricular myoarchitecture in gnathostomes (i.e. jawed vertebrates) with special emphasis on the diversity of the ventricular myocardium throughout the phylogeny of ancient actinopterygians and teleosts. Finally, we propose that the classification of the ventricular myoarchitecture should be reconsidered, given that the degrees of myocardial compactness on which the current classification system is based do not constitute discrete states, but an anatomical continuum.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
脊椎动物心室的肌结构:进化与分类。
脊椎动物心脏的心室是心脏流出区的主要部分。与心脏的其他组成部分相比,心室在不同动物群体中表现出显著的组织形态学差异。这种差异在心肌中尤为明显,一般可分为三大类型:小梁型、紧密型和混合型。小梁型心肌或 "海绵状 "心肌的特点是存在小梁和深凹陷或小梁间空隙,内衬为心内膜。紧密型心肌由凝结的心肌纤维组成,几乎没有小梁层。混合型由外层紧密层和内层小梁层组成。在脊椎动物中,鱼类的心肌类型多种多样。在此基础上,心室肌结构被分为复杂程度不同的四类。这种分类的依据是:(i) 小梁型心肌和紧密型心肌这两种心肌的比例;(ii) 心壁的血管化。在此,我们回顾了导致有颌脊椎动物心室肌结构不同的形态发生机制,并特别强调了心室心肌在古动口类和长臂猿类系统发育过程中的多样性。最后,我们建议重新考虑心室肌结构的分类,因为当前分类系统所依据的心肌致密程度并不构成离散状态,而是一个解剖连续体。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
5.50
自引率
10.70%
发文量
494
审稿时长
1 months
期刊介绍: Journal of Experimental Biology is the leading primary research journal in comparative physiology and publishes papers on the form and function of living organisms at all levels of biological organisation, from the molecular and subcellular to the integrated whole animal.
期刊最新文献
How do fish miss? Attack strategies of threespine stickleback capturing non-evasive prey. Hypertonic water reabsorption with a parallel-current system via the glandular and saccular renal tubules of Ruditapes philippinarum. Skittering locomotion in cricket frogs: a form of porpoising. Investigating in vivo force and work production of rat medial gastrocnemius at varying locomotor speeds using a muscle avatar. Bridging the divide in organismal physiology: a case for the integration of behaviour as a physiological process.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1