The Longitudinal Effects of Resisted and Assisted Sprint Training on Sprint Kinematics, Acceleration, and Maximum Velocity: A Systematic Review and Meta-analysis.
{"title":"The Longitudinal Effects of Resisted and Assisted Sprint Training on Sprint Kinematics, Acceleration, and Maximum Velocity: A Systematic Review and Meta-analysis.","authors":"Simen Myrvang, Roland van den Tillaar","doi":"10.1186/s40798-024-00777-7","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Sprinting is important for both individual and team sports, and enhancing performance is often done through resisted, assisted, or combined sprint training. However, the effectiveness of these methods compared to traditional sprint training remains inconclusive. The objective of this review with meta-analysis was to review the current literature on intervention studies analyzing the effects of resisted, assisted, and combined (resisted-assisted) training on sprint kinematics and performance in terms of acceleration and maximum velocity.</p><p><strong>Methods: </strong>A literature search was conducted using SPORTDiscus up to and including April 19, 2023. The following eligibility criteria were applied: (1) a longitudinal study over a minimum of four weeks; (2) studies using resistance (sleds, parachutes, uphill slope, towing devices) or assistance (towing devices, downhill slope), or a combination of both; (3) a main intervention focused on resisted or assisted training, or a combination of both; (4) measurement of maximum velocity, acceleration measured in (s) with a minimum distance of 10-m, or kinematic changes such as step frequency, ground contact time, flight time, and step length; and (5) peer-reviewed studies.</p><p><strong>Results: </strong>Twenty-one studies were included in this review with meta-analysis. Kinematic changes, changes in acceleration, and changes in maximum velocity were analyzed. Only resisted sprint training was associated with a significant improvement in 10-m acceleration compared to normal (i.e. without assistance or resistance) sprinting (Z = 2.01, P = 0.04). With resisted, assisted and combined sprint training no significant changes in kinematics, 20-m times or maximum velocity were found when compared to normal sprint training. However, in the within group, effect sizes resisted sprint training had a moderate effect on 10-m times. A moderate effect on ground contact time, step frequency, 10-and 20-meter time after assisted sprint training was found, while combined sprint training had a moderate effect on maximum velocity.</p><p><strong>Conclusion: </strong>Resisted sprint training seems to be effective for improving acceleration ability, with significant decreases in the 10-m times. There were no other significant findings, suggesting that normal sprinting yields the same change in 20-m times, kinematics and maximum velocity as resisted, assisted and combined sprint training. However, moderate effect sizes using these different training methods were found, which may suggest that the different training forms could be useful for improving different parts of the sprint and changing the kinematics. Combination (uphill-downhill) sprint training seems to be effective at improving maximum velocity, while assisted sprint training was the most effective training to increase step frequency, which can affect sprint performance positively. However, more studies, especially in assisted sprints, need to be conducted to determine the full effect of these training forms.</p>","PeriodicalId":21788,"journal":{"name":"Sports Medicine - Open","volume":"10 1","pages":"110"},"PeriodicalIF":4.1000,"publicationDate":"2024-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11469994/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sports Medicine - Open","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s40798-024-00777-7","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"SPORT SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Sprinting is important for both individual and team sports, and enhancing performance is often done through resisted, assisted, or combined sprint training. However, the effectiveness of these methods compared to traditional sprint training remains inconclusive. The objective of this review with meta-analysis was to review the current literature on intervention studies analyzing the effects of resisted, assisted, and combined (resisted-assisted) training on sprint kinematics and performance in terms of acceleration and maximum velocity.
Methods: A literature search was conducted using SPORTDiscus up to and including April 19, 2023. The following eligibility criteria were applied: (1) a longitudinal study over a minimum of four weeks; (2) studies using resistance (sleds, parachutes, uphill slope, towing devices) or assistance (towing devices, downhill slope), or a combination of both; (3) a main intervention focused on resisted or assisted training, or a combination of both; (4) measurement of maximum velocity, acceleration measured in (s) with a minimum distance of 10-m, or kinematic changes such as step frequency, ground contact time, flight time, and step length; and (5) peer-reviewed studies.
Results: Twenty-one studies were included in this review with meta-analysis. Kinematic changes, changes in acceleration, and changes in maximum velocity were analyzed. Only resisted sprint training was associated with a significant improvement in 10-m acceleration compared to normal (i.e. without assistance or resistance) sprinting (Z = 2.01, P = 0.04). With resisted, assisted and combined sprint training no significant changes in kinematics, 20-m times or maximum velocity were found when compared to normal sprint training. However, in the within group, effect sizes resisted sprint training had a moderate effect on 10-m times. A moderate effect on ground contact time, step frequency, 10-and 20-meter time after assisted sprint training was found, while combined sprint training had a moderate effect on maximum velocity.
Conclusion: Resisted sprint training seems to be effective for improving acceleration ability, with significant decreases in the 10-m times. There were no other significant findings, suggesting that normal sprinting yields the same change in 20-m times, kinematics and maximum velocity as resisted, assisted and combined sprint training. However, moderate effect sizes using these different training methods were found, which may suggest that the different training forms could be useful for improving different parts of the sprint and changing the kinematics. Combination (uphill-downhill) sprint training seems to be effective at improving maximum velocity, while assisted sprint training was the most effective training to increase step frequency, which can affect sprint performance positively. However, more studies, especially in assisted sprints, need to be conducted to determine the full effect of these training forms.