LysoPE mediated by respiratory microorganism Aeromicrobium camelliae alleviates H9N2 challenge in mice.

IF 3.7 1区 农林科学 Q1 VETERINARY SCIENCES Veterinary Research Pub Date : 2024-10-11 DOI:10.1186/s13567-024-01391-x
Qingsong Yan, Junhong Xing, Ruonan Zou, Mingjie Sun, Boshi Zou, Yingjie Wang, Tianming Niu, Tong Yu, Haibin Huang, Wentao Yang, Chunwei Shi, Guilian Yang, Chunfeng Wang
{"title":"LysoPE mediated by respiratory microorganism Aeromicrobium camelliae alleviates H9N2 challenge in mice.","authors":"Qingsong Yan, Junhong Xing, Ruonan Zou, Mingjie Sun, Boshi Zou, Yingjie Wang, Tianming Niu, Tong Yu, Haibin Huang, Wentao Yang, Chunwei Shi, Guilian Yang, Chunfeng Wang","doi":"10.1186/s13567-024-01391-x","DOIUrl":null,"url":null,"abstract":"<p><p>Influenza remains a severe respiratory illness that poses significant global health threats. Recent studies have identified distinct microbial communities within the respiratory tract, from nostrils to alveoli. This research explores specific anti-influenza respiratory microbes using a mouse model supported by 16S rDNA sequencing and untargeted metabolomics. The study found that transferring respiratory microbes from mice that survived H9N2 influenza to antibiotic-treated mice enhanced infection resistance. Notably, the levels of Aeromicrobium were significantly higher in the surviving mice. Mice pre-treated with antibiotics and then inoculated with Aeromicrobium camelliae showed reduced infection severity, as evidenced by decreased weight loss, higher survival rates, and lower lung viral titres. Metabolomic analysis revealed elevated LysoPE (16:0) levels in mildly infected mice. In vivo and in vitro experiments indicated that LysoPE (16:0) suppresses inducible nitric oxide synthase (INOS) and cyclooxygenase-2 (COX2) expression, enhancing anti-influenza defences. Our findings suggest that Aeromicrobium camelliae could serve as a potential agent for influenza prevention and a prognostic marker for influenza outcomes.</p>","PeriodicalId":23658,"journal":{"name":"Veterinary Research","volume":"55 1","pages":"136"},"PeriodicalIF":3.7000,"publicationDate":"2024-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11468851/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Veterinary Research","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1186/s13567-024-01391-x","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"VETERINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Influenza remains a severe respiratory illness that poses significant global health threats. Recent studies have identified distinct microbial communities within the respiratory tract, from nostrils to alveoli. This research explores specific anti-influenza respiratory microbes using a mouse model supported by 16S rDNA sequencing and untargeted metabolomics. The study found that transferring respiratory microbes from mice that survived H9N2 influenza to antibiotic-treated mice enhanced infection resistance. Notably, the levels of Aeromicrobium were significantly higher in the surviving mice. Mice pre-treated with antibiotics and then inoculated with Aeromicrobium camelliae showed reduced infection severity, as evidenced by decreased weight loss, higher survival rates, and lower lung viral titres. Metabolomic analysis revealed elevated LysoPE (16:0) levels in mildly infected mice. In vivo and in vitro experiments indicated that LysoPE (16:0) suppresses inducible nitric oxide synthase (INOS) and cyclooxygenase-2 (COX2) expression, enhancing anti-influenza defences. Our findings suggest that Aeromicrobium camelliae could serve as a potential agent for influenza prevention and a prognostic marker for influenza outcomes.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
由呼吸道微生物山茶气单胞菌(Aeromicrobium camelliae)介导的溶菌酶 PE 可减轻小鼠的 H9N2 病毒感染。
流感仍然是一种严重的呼吸道疾病,对全球健康构成重大威胁。最近的研究发现,从鼻孔到肺泡,呼吸道内的微生物群落各不相同。这项研究利用 16S rDNA 测序和非靶向代谢组学支持的小鼠模型,探索了特定的抗流感呼吸道微生物。研究发现,将从 H9N2 流感中存活下来的小鼠的呼吸道微生物转移到抗生素治疗的小鼠身上,可增强小鼠的抗感染能力。值得注意的是,存活小鼠的呼吸道微生物水平明显更高。小鼠经抗生素预处理后接种山茶担子菌,感染严重程度降低,表现为体重减轻、存活率提高和肺部病毒滴度降低。代谢组分析表明,轻度感染的小鼠体内溶菌酶(16:0)水平升高。体内和体外实验表明,LysoPE(16:0)能抑制诱导型一氧化氮合酶(INOS)和环氧化酶-2(COX2)的表达,增强抗流感防御能力。我们的研究结果表明,山茶气生菌可作为一种潜在的流感预防药物和流感预后标志物。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Veterinary Research
Veterinary Research 农林科学-兽医学
CiteScore
7.00
自引率
4.50%
发文量
92
审稿时长
3 months
期刊介绍: Veterinary Research is an open access journal that publishes high quality and novel research and review articles focusing on all aspects of infectious diseases and host-pathogen interaction in animals.
期刊最新文献
Avian influenza virus circulation and immunity in a wild urban duck population prior to and during a highly pathogenic H5N1 outbreak. A pH-triggered self-releasing humic acid hydrogel loaded with porcine interferon α/γ achieves anti-pseudorabies virus effects by oral administration. Bactericidal activities and biochemical features of 16 antimicrobial peptides against bovine-mastitis causative pathogens. Correction: Blastocystis occurrence and subtype diversity in European wild boar (Sus scrofa) from the Iberian Peninsula. Porcine reproductive and respiratory syndrome virus degrades TANK-binding kinase 1 via chaperon-mediated autophagy to suppress type I interferon production and facilitate viral proliferation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1