Revealing the hidden RBP-RNA interactions with RNA modification enzyme-based strategies.

IF 6.4 2区 生物学 Q1 CELL BIOLOGY Wiley Interdisciplinary Reviews: RNA Pub Date : 2024-05-01 DOI:10.1002/wrna.1863
Hua Jin, Chong Li, Yunxiao Jia, Yuxuan Qi, Weilan Piao
{"title":"Revealing the hidden RBP-RNA interactions with RNA modification enzyme-based strategies.","authors":"Hua Jin, Chong Li, Yunxiao Jia, Yuxuan Qi, Weilan Piao","doi":"10.1002/wrna.1863","DOIUrl":null,"url":null,"abstract":"<p><p>RNA-binding proteins (RBPs) are powerful and versatile regulators in living creatures, playing fundamental roles in organismal development, metabolism, and various diseases by the regulation of gene expression at multiple levels. The requirements of deep research on RBP function have promoted the rapid development of RBP-RNA interplay detection methods. Recently, the detection method of fusing RNA modification enzymes (RME) with RBP of interest has become a hot topic. Here, we reviewed RNA modification enzymes in adenosine deaminases that act on RNA (ADAR), terminal nucleotidyl transferase (TENT), and activation-induced cytosine deaminase/ApoB mRNA editing enzyme catalytic polypeptide-like (AID/APOBEC) protein family, regarding the biological function, biochemical activity, and substrate specificity originated from enzyme selves, their domains and partner proteins. In addition, we discussed the RME activity screening system, and the RME mutations with engineered enzyme activity. Furthermore, we provided a systematic overview of the basic principles, advantages, disadvantages, and applications of the RME-based and cross-linking and immunopurification (CLIP)-based RBP target profiling strategies, including targets of RNA-binding proteins identified by editing (TRIBE), RNA tagging, surveying targets by APOBEC-mediated profiling (STAMP), CLIP-seq, and their derivative technology. This article is categorized under: RNA Interactions with Proteins and Other Molecules > Protein-RNA Recognition RNA Processing > RNA Editing and Modification.</p>","PeriodicalId":23886,"journal":{"name":"Wiley Interdisciplinary Reviews: RNA","volume":"15 3","pages":"e1863"},"PeriodicalIF":6.4000,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11469752/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Wiley Interdisciplinary Reviews: RNA","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1002/wrna.1863","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

RNA-binding proteins (RBPs) are powerful and versatile regulators in living creatures, playing fundamental roles in organismal development, metabolism, and various diseases by the regulation of gene expression at multiple levels. The requirements of deep research on RBP function have promoted the rapid development of RBP-RNA interplay detection methods. Recently, the detection method of fusing RNA modification enzymes (RME) with RBP of interest has become a hot topic. Here, we reviewed RNA modification enzymes in adenosine deaminases that act on RNA (ADAR), terminal nucleotidyl transferase (TENT), and activation-induced cytosine deaminase/ApoB mRNA editing enzyme catalytic polypeptide-like (AID/APOBEC) protein family, regarding the biological function, biochemical activity, and substrate specificity originated from enzyme selves, their domains and partner proteins. In addition, we discussed the RME activity screening system, and the RME mutations with engineered enzyme activity. Furthermore, we provided a systematic overview of the basic principles, advantages, disadvantages, and applications of the RME-based and cross-linking and immunopurification (CLIP)-based RBP target profiling strategies, including targets of RNA-binding proteins identified by editing (TRIBE), RNA tagging, surveying targets by APOBEC-mediated profiling (STAMP), CLIP-seq, and their derivative technology. This article is categorized under: RNA Interactions with Proteins and Other Molecules > Protein-RNA Recognition RNA Processing > RNA Editing and Modification.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用基于 RNA 修饰酶的策略揭示隐藏的 RBP-RNA 相互作用。
RNA 结合蛋白(RBPs)是生物体内强大而多变的调控因子,通过在多个水平上调控基因表达,在生物体发育、新陈代谢和各种疾病中发挥着基础性作用。对 RBP 功能深入研究的要求促进了 RBP-RNA 相互作用检测方法的快速发展。最近,RNA修饰酶(RME)与相关RBP的融合检测方法成为了一个热门话题。在此,我们综述了作用于 RNA 的腺苷脱氨酶(ADAR)、末端核苷酸转移酶(TENT)和活化诱导胞嘧啶脱氨酶/载脂蛋白 mRNA 编辑酶催化多肽样(AID/APOBEC)蛋白家族中的 RNA 修饰酶,从酶本身、其结构域和伙伴蛋白出发,探讨了它们的生物学功能、生化活性和底物特异性。此外,我们还讨论了 RME 活性筛选系统,以及具有工程酶活性的 RME 突变。此外,我们还系统概述了基于 RME 和基于交联和免疫纯化(CLIP)的 RBP 靶标分析策略的基本原理、优缺点和应用,包括通过编辑(TRIBE)、RNA 标记、APOBEC 介导的靶标分析(STAMP)、CLIP-seq 及其衍生技术识别的 RNA 结合蛋白靶标。本文归类于RNA 与蛋白质和其他分子的相互作用 > 蛋白质-RNA 识别 RNA 处理 > RNA 编辑和修饰。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
14.80
自引率
4.10%
发文量
67
审稿时长
6-12 weeks
期刊介绍: WIREs RNA aims to provide comprehensive, up-to-date, and coherent coverage of this interesting and growing field, providing a framework for both RNA experts and interdisciplinary researchers to not only gain perspective in areas of RNA biology, but to generate new insights and applications as well. Major topics to be covered are: RNA Structure and Dynamics; RNA Evolution and Genomics; RNA-Based Catalysis; RNA Interactions with Proteins and Other Molecules; Translation; RNA Processing; RNA Export/Localization; RNA Turnover and Surveillance; Regulatory RNAs/RNAi/Riboswitches; RNA in Disease and Development; and RNA Methods.
期刊最新文献
Three Stages of Nascent Protein Translocation Through the Ribosome Exit Tunnel. Decoding the role of RNA sequences and their interactions in influenza A virus infection and adaptation. Current Understandings and Open Hypotheses on Extracellular Circular RNAs. Contribution of DNA/RNA Structures Formed by Expanded CGG/CCG Repeats Within the FMR1 Locus in the Pathogenesis of Fragile X-Associated Disorders. Integrated Biochemical and Computational Methods for Deciphering RNA-Processing Codes.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1