Complex Emotion Dynamics Contribute to the Prediction of Depression: A Machine Learning and Time Series Feature Extraction Approach

IF 2.1 Q2 PSYCHOLOGY Affective science Pub Date : 2024-08-03 DOI:10.1007/s42761-024-00249-x
Mackenzie Zisser, Jason Shumake, Christopher G. Beevers
{"title":"Complex Emotion Dynamics Contribute to the Prediction of Depression: A Machine Learning and Time Series Feature Extraction Approach","authors":"Mackenzie Zisser,&nbsp;Jason Shumake,&nbsp;Christopher G. Beevers","doi":"10.1007/s42761-024-00249-x","DOIUrl":null,"url":null,"abstract":"<div><p>Emotion dynamics have demonstrated mixed ability to predict depressive symptoms and outperform traditional metrics like the mean and standard deviation of emotion reports. Here, we expand the types of emotion dynamic features used in prior work and apply a machine learning algorithm to predict depression symptoms. We obtained seven ecological momentary assessment (EMA) studies from previous work on depression and emotion dynamics (<i>N</i> = 890). These studies measured self-reported sadness, positive affect, and negative affect 5 to 10 times per day for 7 to 21 days (schedule varied across studies). These data were fed through a feature extraction routine to generate hundreds of emotion dynamic features. A gradient boosting machine (GBM) using all available emotion dynamics features was the best of all models assessed. This model’s out-of-sample prediction (<i>R</i><sup>2</sup><sub>pred</sub>) for depression severity ranged from .20 to .44 depending on EMA interpolation method and samples included in the analysis. It also explained significantly more variance than a benchmark model of individuals’ mean emotion ratings over the assessment period, <i>R</i><sup>2</sup><sub>pred</sub> = .089. Comprehensive feature mining of emotion dynamics obtained during EMA may be necessary to identify processes that predict depression symptoms beyond mean emotion ratings.</p></div>","PeriodicalId":72119,"journal":{"name":"Affective science","volume":"5 3","pages":"259 - 272"},"PeriodicalIF":2.1000,"publicationDate":"2024-08-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Affective science","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s42761-024-00249-x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PSYCHOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Emotion dynamics have demonstrated mixed ability to predict depressive symptoms and outperform traditional metrics like the mean and standard deviation of emotion reports. Here, we expand the types of emotion dynamic features used in prior work and apply a machine learning algorithm to predict depression symptoms. We obtained seven ecological momentary assessment (EMA) studies from previous work on depression and emotion dynamics (N = 890). These studies measured self-reported sadness, positive affect, and negative affect 5 to 10 times per day for 7 to 21 days (schedule varied across studies). These data were fed through a feature extraction routine to generate hundreds of emotion dynamic features. A gradient boosting machine (GBM) using all available emotion dynamics features was the best of all models assessed. This model’s out-of-sample prediction (R2pred) for depression severity ranged from .20 to .44 depending on EMA interpolation method and samples included in the analysis. It also explained significantly more variance than a benchmark model of individuals’ mean emotion ratings over the assessment period, R2pred = .089. Comprehensive feature mining of emotion dynamics obtained during EMA may be necessary to identify processes that predict depression symptoms beyond mean emotion ratings.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
复杂情绪动态有助于预测抑郁症:机器学习和时间序列特征提取方法。
情绪动态在预测抑郁症状方面的能力参差不齐,而且优于情绪报告的平均值和标准偏差等传统指标。在此,我们扩展了之前工作中使用的情绪动态特征类型,并应用机器学习算法来预测抑郁症状。我们从以前关于抑郁和情绪动态的研究中获得了七项生态瞬间评估(EMA)研究(N = 890)。这些研究测量了自我报告的悲伤情绪、积极情绪和消极情绪,每天测量 5 到 10 次,持续 7 到 21 天(不同研究的时间安排不同)。这些数据通过特征提取程序生成数百个情绪动态特征。使用所有可用情绪动态特征的梯度提升机(GBM)是所有评估模型中最好的。该模型对抑郁严重程度的样本外预测(R 2 pred)从 0.20 到 0.44 不等,具体取决于 EMA 插值方法和分析中包含的样本。与评估期间个人平均情绪评级的基准模型(R 2 pred = .089)相比,该模型对方差的解释也明显更多。要识别平均情绪评分以外的预测抑郁症状的过程,可能需要对 EMA 期间获得的情绪动态进行全面的特征挖掘。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
4.40
自引率
0.00%
发文量
0
期刊最新文献
Introduction to the Special Section Commentaries Affectivism and the Emotional Elephant: How a Componential Approach Can Reconcile Opposing Theories to Serve the Future of Affective Sciences A Developmental Psychobiologist’s Commentary on the Future of Affective Science Emotional Overshadowing: Pleasant and Unpleasant Cues Overshadow Neutral Cues in Human Associative Learning Emphasizing the Social in Social Emotion Regulation: A Call for Integration and Expansion
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1