Lightweight technology stacks for assistive linked annotations.

Nishad Thalhath
{"title":"Lightweight technology stacks for assistive linked annotations.","authors":"Nishad Thalhath","doi":"10.1186/s44342-024-00021-4","DOIUrl":null,"url":null,"abstract":"<p><p>This report presents the findings of a project from the 8th Biomedical Linked Annotation Hackathon (BLAH) to explore lightweight technology stacks to enhance assistive linked annotations. Using modern JavaScript frameworks and edge functions, in-browser Named Entity Recognition (NER), serverless embedding and vector search within web interfaces, and efficient serverless full-text search were implemented. Through this experimental approach, a proof of concept to demonstrate the feasibility and performance of these technologies was demonstrated. The results show that lightweight stacks can significantly improve the efficiency and cost-effectiveness of annotation tools and provide a local-first, privacy-oriented, and secure alternative to traditional server-based solutions in various use cases. This work emphasizes the potential of developing annotation interfaces that are more responsive, scalable, and user-friendly, which would benefit bioinformatics researchers, practitioners, and software developers.</p>","PeriodicalId":94288,"journal":{"name":"Genomics & informatics","volume":"22 1","pages":"17"},"PeriodicalIF":0.0000,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11468380/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genomics & informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s44342-024-00021-4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This report presents the findings of a project from the 8th Biomedical Linked Annotation Hackathon (BLAH) to explore lightweight technology stacks to enhance assistive linked annotations. Using modern JavaScript frameworks and edge functions, in-browser Named Entity Recognition (NER), serverless embedding and vector search within web interfaces, and efficient serverless full-text search were implemented. Through this experimental approach, a proof of concept to demonstrate the feasibility and performance of these technologies was demonstrated. The results show that lightweight stacks can significantly improve the efficiency and cost-effectiveness of annotation tools and provide a local-first, privacy-oriented, and secure alternative to traditional server-based solutions in various use cases. This work emphasizes the potential of developing annotation interfaces that are more responsive, scalable, and user-friendly, which would benefit bioinformatics researchers, practitioners, and software developers.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于辅助链接注释的轻量级技术栈。
本报告介绍了第八届生物医学关联注释黑客马拉松(BLAH)项目的研究成果,该项目旨在探索轻量级技术堆栈,以增强辅助性关联注释。该项目利用现代 JavaScript 框架和边缘函数,实现了浏览器内的命名实体识别(NER)、网络界面内的无服务器嵌入和矢量搜索,以及高效的无服务器全文搜索。通过这种实验方法,证明了这些技术的可行性和性能。结果表明,轻量级堆栈可以显著提高注释工具的效率和成本效益,并在各种使用案例中提供了一种本地优先、面向隐私和安全的解决方案,以替代传统的基于服务器的解决方案。这项工作强调了开发反应更灵敏、可扩展和用户友好的注释界面的潜力,这将使生物信息学研究人员、从业人员和软件开发人员受益匪浅。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Structural insights into antibody-based immunotherapy for hepatocellular carcinoma. DeepDoublet identifies neighboring cell-dependent gene expression. Rore: robust and efficient antioxidant protein classification via a novel dimensionality reduction strategy based on learning of fewer features. Rare disease genomics and precision medicine. Common genetic etiologies of sensorineural hearing loss in Koreans.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1