{"title":"Spread or Splash: The Ubiquitous Role of Droplets in Mafic Explosive Eruptions","authors":"Pier Paolo Comida, Thomas J. Jones","doi":"10.1029/2024GC011770","DOIUrl":null,"url":null,"abstract":"<p>Magma fragmentation is an essential process driving explosive volcanic eruptions, generating a distribution of pyroclasts with characteristic shape and grain size. These characteristics are often used to inform on the energetics of magma fragmentation and the associated eruption style and intensity. However, a portion of these pyroclasts, droplets when still in the molten state, are likely to be generated through impact mechanisms (i.e., collisions), and subsequent secondary fragmentation (i.e., splashing). Here, we successfully apply and dynamically scale concepts and findings of liquid droplet impacts in engineering to magma fragmentation processes in volcanology. We compile and model physical data for two mafic melt compositions (kimberlite and basalt) and use specific eruption examples from Igwisi Hills, Kīlauea and Stromboli volcanoes to define composition-specific impact dynamics. Pyroclast impact dynamics have a direct control on in-conduit processes, eruption dynamics, and ash dispersal. For low viscosity mafic melts such as kimberlite and basalt, pyroclast impacts can lead to both splash and deposition on the conduit wall, resulting either in conduit clearing or conduit narrowing, respectively. In both cases, shifting the impact regime toward surface deposition will lead to an inexorable decay in explosiveness, potentially switching the eruption style to effusive behavior. This has direct consequences for the transport of volcanic ash at the surface and inferring magma fragmentation processes (e.g., energies) from the depositional record.</p>","PeriodicalId":50422,"journal":{"name":"Geochemistry Geophysics Geosystems","volume":"25 10","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2024-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024GC011770","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geochemistry Geophysics Geosystems","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2024GC011770","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
Magma fragmentation is an essential process driving explosive volcanic eruptions, generating a distribution of pyroclasts with characteristic shape and grain size. These characteristics are often used to inform on the energetics of magma fragmentation and the associated eruption style and intensity. However, a portion of these pyroclasts, droplets when still in the molten state, are likely to be generated through impact mechanisms (i.e., collisions), and subsequent secondary fragmentation (i.e., splashing). Here, we successfully apply and dynamically scale concepts and findings of liquid droplet impacts in engineering to magma fragmentation processes in volcanology. We compile and model physical data for two mafic melt compositions (kimberlite and basalt) and use specific eruption examples from Igwisi Hills, Kīlauea and Stromboli volcanoes to define composition-specific impact dynamics. Pyroclast impact dynamics have a direct control on in-conduit processes, eruption dynamics, and ash dispersal. For low viscosity mafic melts such as kimberlite and basalt, pyroclast impacts can lead to both splash and deposition on the conduit wall, resulting either in conduit clearing or conduit narrowing, respectively. In both cases, shifting the impact regime toward surface deposition will lead to an inexorable decay in explosiveness, potentially switching the eruption style to effusive behavior. This has direct consequences for the transport of volcanic ash at the surface and inferring magma fragmentation processes (e.g., energies) from the depositional record.
期刊介绍:
Geochemistry, Geophysics, Geosystems (G3) publishes research papers on Earth and planetary processes with a focus on understanding the Earth as a system. Observational, experimental, and theoretical investigations of the solid Earth, hydrosphere, atmosphere, biosphere, and solar system at all spatial and temporal scales are welcome. Articles should be of broad interest, and interdisciplinary approaches are encouraged.
Areas of interest for this peer-reviewed journal include, but are not limited to:
The physics and chemistry of the Earth, including its structure, composition, physical properties, dynamics, and evolution
Principles and applications of geochemical proxies to studies of Earth history
The physical properties, composition, and temporal evolution of the Earth''s major reservoirs and the coupling between them
The dynamics of geochemical and biogeochemical cycles at all spatial and temporal scales
Physical and cosmochemical constraints on the composition, origin, and evolution of the Earth and other terrestrial planets
The chemistry and physics of solar system materials that are relevant to the formation, evolution, and current state of the Earth and the planets
Advances in modeling, observation, and experimentation that are of widespread interest in the geosciences.