Betaine Supplementation Into High-Carbohydrate Diets Improves Feed Efficiency and Liver Health of Megalobrama amblycephala by Increasing Taurine Synthesis
Wenbo Pan, Fan Wang, Jia Xu, Juntao Li, Jian Gao, Yuhua Zhao, Qingchao Wang
{"title":"Betaine Supplementation Into High-Carbohydrate Diets Improves Feed Efficiency and Liver Health of Megalobrama amblycephala by Increasing Taurine Synthesis","authors":"Wenbo Pan, Fan Wang, Jia Xu, Juntao Li, Jian Gao, Yuhua Zhao, Qingchao Wang","doi":"10.1155/2024/9632883","DOIUrl":null,"url":null,"abstract":"<div>\n <p>Dietary betaine supplementation has been reported to alleviate the adverse effects of high-carbohydrate diets on <i>Megalobrama amblycephala</i>, while the regulatory mechanism remains largely unknown. In the present study, a 79-day feeding trial was conducted with 450 juvenile <i>Megalobrama amblycephala</i> (average weight 6.75 ± 0.10 g), which were fed with five high-carbohydrate diets (43%) supplementing betaine at 0% (CD group), 0.2% (0.2Bet group), 0.4% (0.4Bet group), 0.8% (0.8Bet group), and 1.6% (1.6Bet group), respectively. Results showed <i>M. amblycephala</i> in 0.8Bet group exhibited the best growth performance, indicated by the largest weight gain ratio (142.88%) and least feed conversion ratio (1.63). Moreover, liver health was promoted in 0.8Bet group, with decreased number of non-nucleated cells and less lipid accumulation, which was accompanied by the lowest hepatosomatic index (1.38%). In order to further illustrate the regulatory mechanism, metabolites assay indicated that dietary betaine supplementation significantly increased plasma contents of methionine, serine, hypotaurine, and taurine, but did not affect plasma contents of cystathionine, cystine, or cysteic acid. Accordingly, the mRNA expressions of cysteine sulfinate decarboxylase in cysteine sulfinic acid pathway and cysteamine dioxygenase (ADO) in sulfinic acid (CS) pathway, which were both involved in taurine synthesis, were also upregulated in the liver. Meanwhile, the microbial communities in <i>M. amblycephala</i> intestine were more stable and uniform with betaine supplementation. Therefore, dietary betaine supplementation may exert its protective roles in improving feed efficiency and liver health of <i>M. amblycephala</i> via promoting de novo taurine synthesis and stabilizing intestinal microbial communities.</p>\n </div>","PeriodicalId":8225,"journal":{"name":"Aquaculture Nutrition","volume":"2024 1","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2024-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1155/2024/9632883","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aquaculture Nutrition","FirstCategoryId":"97","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1155/2024/9632883","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FISHERIES","Score":null,"Total":0}
引用次数: 0
Abstract
Dietary betaine supplementation has been reported to alleviate the adverse effects of high-carbohydrate diets on Megalobrama amblycephala, while the regulatory mechanism remains largely unknown. In the present study, a 79-day feeding trial was conducted with 450 juvenile Megalobrama amblycephala (average weight 6.75 ± 0.10 g), which were fed with five high-carbohydrate diets (43%) supplementing betaine at 0% (CD group), 0.2% (0.2Bet group), 0.4% (0.4Bet group), 0.8% (0.8Bet group), and 1.6% (1.6Bet group), respectively. Results showed M. amblycephala in 0.8Bet group exhibited the best growth performance, indicated by the largest weight gain ratio (142.88%) and least feed conversion ratio (1.63). Moreover, liver health was promoted in 0.8Bet group, with decreased number of non-nucleated cells and less lipid accumulation, which was accompanied by the lowest hepatosomatic index (1.38%). In order to further illustrate the regulatory mechanism, metabolites assay indicated that dietary betaine supplementation significantly increased plasma contents of methionine, serine, hypotaurine, and taurine, but did not affect plasma contents of cystathionine, cystine, or cysteic acid. Accordingly, the mRNA expressions of cysteine sulfinate decarboxylase in cysteine sulfinic acid pathway and cysteamine dioxygenase (ADO) in sulfinic acid (CS) pathway, which were both involved in taurine synthesis, were also upregulated in the liver. Meanwhile, the microbial communities in M. amblycephala intestine were more stable and uniform with betaine supplementation. Therefore, dietary betaine supplementation may exert its protective roles in improving feed efficiency and liver health of M. amblycephala via promoting de novo taurine synthesis and stabilizing intestinal microbial communities.
期刊介绍:
Aquaculture Nutrition is published on a bimonthly basis, providing a global perspective on the nutrition of all cultivated aquatic animals. Topics range from extensive aquaculture to laboratory studies of nutritional biochemistry and physiology. The Journal specifically seeks to improve our understanding of the nutrition of aquacultured species through the provision of an international forum for the presentation of reviews and original research papers.
Aquaculture Nutrition publishes papers which strive to:
increase basic knowledge of the nutrition of aquacultured species and elevate the standards of published aquaculture nutrition research.
improve understanding of the relationships between nutrition and the environmental impact of aquaculture.
increase understanding of the relationships between nutrition and processing, product quality, and the consumer.
help aquaculturalists improve their management and understanding of the complex discipline of nutrition.
help the aquaculture feed industry by providing a focus for relevant information, techniques, tools and concepts.