Cauê S. Borlina, Eduardo A. Lima, Joshua M. Feinberg, Plinio Jaqueto, Ioan Lascu, Ricardo I. F. Trindade, Eric Font, Elisa M. Sánchez-Moreno, Luca Antonio Dimuccio, Yusuke Yokoyama, Josep M. Parés, Benjamin P. Weiss, Jeffrey A. Dorale
{"title":"Obtaining High-Resolution Magnetic Records From Speleothems Using Magnetic Microscopy","authors":"Cauê S. Borlina, Eduardo A. Lima, Joshua M. Feinberg, Plinio Jaqueto, Ioan Lascu, Ricardo I. F. Trindade, Eric Font, Elisa M. Sánchez-Moreno, Luca Antonio Dimuccio, Yusuke Yokoyama, Josep M. Parés, Benjamin P. Weiss, Jeffrey A. Dorale","doi":"10.1029/2024GC011594","DOIUrl":null,"url":null,"abstract":"<p>Speleothems are mineral deposits capable of recording detrital and/or chemical remanent magnetization at annual timescales. They can offer high-resolution paleomagnetic records of short-term variations in Earth's magnetic field, crucial for understanding the evolution of the dynamo. Owing to limitations on the magnetic moment sensitivity of commercial cryogenic rock magnetometers (∼10<sup>−11</sup> Am<sup>2</sup>), paleomagnetic studies of speleothems have been limited to samples with volumes of several hundreds of mm<sup>3</sup>, averaging tens to hundreds of years of magnetic variation. Nonetheless, smaller samples (∼1–10 mm<sup>3</sup>) can be measured using superconducting quantum interference device (SQUID) microscopy, with a sensitivity better than ∼10<sup>−15</sup> Am<sup>2</sup>. To determine the application of SQUID microscopy for obtaining robust high-resolution records from small-volume speleothem samples, we analyzed three different stalagmites collected from Lapa dos Morcegos Cave (Portugal), Pau d'Alho Cave (Brazil), and Crevice Cave (United States). These stalagmites are representative of a range of magnetic properties and have been previously studied with conventional rock magnetometers. We show that by using SQUID microscopy we can achieve a five-fold improvement in temporal resolution for samples with higher abundances of magnetic carriers (e.g., Pau d'Alho Cave and Lapa dos Morcegos Cave). In contrast, speleothems with low abundances of magnetic carriers (e.g., Crevice Cave) do not benefit from higher resolution analysis and are best analyzed using conventional rock magnetometers. Overall, by targeting speleothem samples with high concentrations of magnetic carriers we can increase the temporal resolution of magnetic records, setting the stage for resolving geomagnetic variations at short time scales.</p>","PeriodicalId":50422,"journal":{"name":"Geochemistry Geophysics Geosystems","volume":null,"pages":null},"PeriodicalIF":2.9000,"publicationDate":"2024-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024GC011594","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geochemistry Geophysics Geosystems","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2024GC011594","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
Speleothems are mineral deposits capable of recording detrital and/or chemical remanent magnetization at annual timescales. They can offer high-resolution paleomagnetic records of short-term variations in Earth's magnetic field, crucial for understanding the evolution of the dynamo. Owing to limitations on the magnetic moment sensitivity of commercial cryogenic rock magnetometers (∼10−11 Am2), paleomagnetic studies of speleothems have been limited to samples with volumes of several hundreds of mm3, averaging tens to hundreds of years of magnetic variation. Nonetheless, smaller samples (∼1–10 mm3) can be measured using superconducting quantum interference device (SQUID) microscopy, with a sensitivity better than ∼10−15 Am2. To determine the application of SQUID microscopy for obtaining robust high-resolution records from small-volume speleothem samples, we analyzed three different stalagmites collected from Lapa dos Morcegos Cave (Portugal), Pau d'Alho Cave (Brazil), and Crevice Cave (United States). These stalagmites are representative of a range of magnetic properties and have been previously studied with conventional rock magnetometers. We show that by using SQUID microscopy we can achieve a five-fold improvement in temporal resolution for samples with higher abundances of magnetic carriers (e.g., Pau d'Alho Cave and Lapa dos Morcegos Cave). In contrast, speleothems with low abundances of magnetic carriers (e.g., Crevice Cave) do not benefit from higher resolution analysis and are best analyzed using conventional rock magnetometers. Overall, by targeting speleothem samples with high concentrations of magnetic carriers we can increase the temporal resolution of magnetic records, setting the stage for resolving geomagnetic variations at short time scales.
期刊介绍:
Geochemistry, Geophysics, Geosystems (G3) publishes research papers on Earth and planetary processes with a focus on understanding the Earth as a system. Observational, experimental, and theoretical investigations of the solid Earth, hydrosphere, atmosphere, biosphere, and solar system at all spatial and temporal scales are welcome. Articles should be of broad interest, and interdisciplinary approaches are encouraged.
Areas of interest for this peer-reviewed journal include, but are not limited to:
The physics and chemistry of the Earth, including its structure, composition, physical properties, dynamics, and evolution
Principles and applications of geochemical proxies to studies of Earth history
The physical properties, composition, and temporal evolution of the Earth''s major reservoirs and the coupling between them
The dynamics of geochemical and biogeochemical cycles at all spatial and temporal scales
Physical and cosmochemical constraints on the composition, origin, and evolution of the Earth and other terrestrial planets
The chemistry and physics of solar system materials that are relevant to the formation, evolution, and current state of the Earth and the planets
Advances in modeling, observation, and experimentation that are of widespread interest in the geosciences.