{"title":"Inside Cover Picture","authors":"","doi":"10.1002/cjoc.202490212","DOIUrl":null,"url":null,"abstract":"<p>The BiOCl<sub>0.5</sub>Br<sub>0.5</sub> with flower-like structure exhibits the layered structure, in which the self-hybridization of chlorine and bromine atoms induces an intensified internal electric field and wider Van der Waals gap, providing a fast diffusion path for K<sup>+</sup> ion. Combining the decreasing of the electron polarons induced by the hybridized structure and the <i>in situ</i> formation of hole-like polarons caused by the dynamic K<sup>+</sup> ion-halogen atoms correlation, the BiOCl<sub>0.5</sub>Br<sub>0.5</sub> anode exhibits a stimulative K<sup>+</sup> ion diffusion kinetics, thus enabling a high electrochemical performance in potassium-ion batteries. More details are discussed in the article by Wu <i>et al</i>. on pages 2589—2598.\n <figure>\n <div><picture>\n <source></source></picture><p></p>\n </div>\n </figure></p>","PeriodicalId":151,"journal":{"name":"Chinese Journal of Chemistry","volume":"42 21","pages":"2554"},"PeriodicalIF":5.5000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cjoc.202490212","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chinese Journal of Chemistry","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cjoc.202490212","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The BiOCl0.5Br0.5 with flower-like structure exhibits the layered structure, in which the self-hybridization of chlorine and bromine atoms induces an intensified internal electric field and wider Van der Waals gap, providing a fast diffusion path for K+ ion. Combining the decreasing of the electron polarons induced by the hybridized structure and the in situ formation of hole-like polarons caused by the dynamic K+ ion-halogen atoms correlation, the BiOCl0.5Br0.5 anode exhibits a stimulative K+ ion diffusion kinetics, thus enabling a high electrochemical performance in potassium-ion batteries. More details are discussed in the article by Wu et al. on pages 2589—2598.
期刊介绍:
The Chinese Journal of Chemistry is an international forum for peer-reviewed original research results in all fields of chemistry. Founded in 1983 under the name Acta Chimica Sinica English Edition and renamed in 1990 as Chinese Journal of Chemistry, the journal publishes a stimulating mixture of Accounts, Full Papers, Notes and Communications in English.