Global Estimates of Particulate Organic Carbon Concentration From the Surface Ocean to the Base of the Mesopelagic

IF 5.4 2区 地球科学 Q1 ENVIRONMENTAL SCIENCES Global Biogeochemical Cycles Pub Date : 2024-10-02 DOI:10.1029/2024GB008149
James Fox, Michael J. Behrenfeld, Kimberly H. Halsey, Jason R. Graff
{"title":"Global Estimates of Particulate Organic Carbon Concentration From the Surface Ocean to the Base of the Mesopelagic","authors":"James Fox,&nbsp;Michael J. Behrenfeld,&nbsp;Kimberly H. Halsey,&nbsp;Jason R. Graff","doi":"10.1029/2024GB008149","DOIUrl":null,"url":null,"abstract":"<p>The gravitational settling of organic particles from the surface to the deep ocean is an important export pathway and one of the largest components of the ocean carbon pump. The strength and efficiency of the gravitational pump are often measured using metrics reliant on reference depths and empirical formulations that parameterize the relationship between depth and the flux or concentration of particulate organic carbon (POC). Here, BGC-Argo profiles were used to identify the isolume where POC concentration, [POC], starts to decline, revealing attenuation trends below this isolume that are remarkably consistent across the global ocean. We developed a simple empirical approach that uses observations from the first optical depth to predict [POC] from the surface ocean to the base of the mesopelagic (1,000 m), allowing assessments of spatial and temporal variability in gravitational pump efficiencies. We find that rates of [POC] attenuation are high in areas of high biomass and low in areas of low biomass, supporting the view that bloom events sometimes result in a relatively weak deep biological pump that is characterized by low transfer efficiency to the base of the mesopelagic. Our isolume-based attenuation model was applied to satellite data to yield the first remote sensing-based estimate of integrated global POC stock of 3.02 Pg C over the top 1,000 m, with an uncertainty of 0.69 Pg C. Of this total stock, approximately 1.02 Pg was located above the reference isolume where [POC] begins to attenuate.</p>","PeriodicalId":12729,"journal":{"name":"Global Biogeochemical Cycles","volume":"38 10","pages":""},"PeriodicalIF":5.4000,"publicationDate":"2024-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024GB008149","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Global Biogeochemical Cycles","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2024GB008149","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

The gravitational settling of organic particles from the surface to the deep ocean is an important export pathway and one of the largest components of the ocean carbon pump. The strength and efficiency of the gravitational pump are often measured using metrics reliant on reference depths and empirical formulations that parameterize the relationship between depth and the flux or concentration of particulate organic carbon (POC). Here, BGC-Argo profiles were used to identify the isolume where POC concentration, [POC], starts to decline, revealing attenuation trends below this isolume that are remarkably consistent across the global ocean. We developed a simple empirical approach that uses observations from the first optical depth to predict [POC] from the surface ocean to the base of the mesopelagic (1,000 m), allowing assessments of spatial and temporal variability in gravitational pump efficiencies. We find that rates of [POC] attenuation are high in areas of high biomass and low in areas of low biomass, supporting the view that bloom events sometimes result in a relatively weak deep biological pump that is characterized by low transfer efficiency to the base of the mesopelagic. Our isolume-based attenuation model was applied to satellite data to yield the first remote sensing-based estimate of integrated global POC stock of 3.02 Pg C over the top 1,000 m, with an uncertainty of 0.69 Pg C. Of this total stock, approximately 1.02 Pg was located above the reference isolume where [POC] begins to attenuate.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
表层海洋至中深海底层颗粒有机碳浓度的全球估计值
有机颗粒从表层向深海的重力沉降是一个重要的输出途径,也是海洋碳泵的最大组成部分之一。重力泵的强度和效率通常使用依赖于参考深度和经验公式的指标来测量,这些经验公式将深度与颗粒有机碳(POC)通量或浓度之间的关系参数化。在这里,我们利用 BGC-Argo 剖面图确定了 POC 浓度([POC])开始下降的隔离层,揭示了该隔离层以下的衰减趋势,而这种衰减趋势在全球海洋中非常一致。我们开发了一种简单的经验方法,利用第一光学深度的观测数据来预测从表层海洋到中层海洋底部(1000 米)的[POC],从而评估重力泵效率的时空变化。我们发现,生物量高的区域[POC]衰减率高,生物量低的区域[POC]衰减率低,这支持了一种观点,即水华事件有时会导致相对较弱的深层生物泵,其特点是向中层底层的传输效率低。我们将基于隔离层的衰减模型应用于卫星数据,首次通过遥感估算出全球 POC 总储量为 3.02 Pg C(最高 1000 米),不确定性为 0.69 Pg C。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Global Biogeochemical Cycles
Global Biogeochemical Cycles 环境科学-地球科学综合
CiteScore
8.90
自引率
7.70%
发文量
141
审稿时长
8-16 weeks
期刊介绍: Global Biogeochemical Cycles (GBC) features research on regional to global biogeochemical interactions, as well as more local studies that demonstrate fundamental implications for biogeochemical processing at regional or global scales. Published papers draw on a wide array of methods and knowledge and extend in time from the deep geologic past to recent historical and potential future interactions. This broad scope includes studies that elucidate human activities as interactive components of biogeochemical cycles and physical Earth Systems including climate. Authors are required to make their work accessible to a broad interdisciplinary range of scientists.
期刊最新文献
A Close Look at Dissolved Silica Dynamics in Disko Bay, West Greenland. Heat and Drought Events Alter Biogenic Capacity to Balance CO2 Budget in South-Western Europe. Particulate Cadmium Accumulation in the Mesopelagic Ocean. The Contrasting Role of Marine- and Land-Terminating Glaciers on Biogeochemical Cycles in Kongsfjorden, Svalbard. Dissolved Nitrogen Cycling in the Eastern Canadian Arctic Archipelago and Baffin Bay From Stable Isotopic Data
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1