Calcium-ferrum-alumina-silicate (CFAS) corrosion behavior of Lu4Hf3O12 ceramics at 1400°C

IF 1.8 4区 材料科学 Q2 MATERIALS SCIENCE, CERAMICS International Journal of Applied Ceramic Technology Pub Date : 2024-06-17 DOI:10.1111/ijac.14827
Chenkai Wang, Zedong Chen, Wei Zhao, Yang Li, Wei Zhou
{"title":"Calcium-ferrum-alumina-silicate (CFAS) corrosion behavior of Lu4Hf3O12 ceramics at 1400°C","authors":"Chenkai Wang,&nbsp;Zedong Chen,&nbsp;Wei Zhao,&nbsp;Yang Li,&nbsp;Wei Zhou","doi":"10.1111/ijac.14827","DOIUrl":null,"url":null,"abstract":"<p>In this work, the corrosion behavior of rare-earth Lu<sub>4</sub>Hf<sub>3</sub>O<sub>12</sub> ceramic when exposed to a CaO-FeO<sub>1.5</sub>-AlO<sub>1.5</sub>-SiO<sub>2</sub> (CFAS) environment at a temperature of 1400°C was investigated, with a focus on exploring the associated phase transformation, microstructure evolution, and corrosion reaction mechanism. Results reveal that during the corrosion process, the CFAS melt infiltrates Lu<sub>4</sub>Hf<sub>3</sub>O<sub>12</sub> particles through cracks, resulting in the formation of a continuous reaction layer. This reaction leads to the generation of several high-melting-point garnets, including HfO<sub>2</sub>, Lu<sub>3</sub>Al<sub>5</sub>O<sub>12</sub>, Ca<sub>3</sub>Fe<sub>2</sub>(SiO<sub>4</sub>)<sub>3</sub> (Ca-Fe garnet), and Ca<sub>3</sub>Al<sub>2</sub>Si<sub>3</sub>O<sub>12</sub> (Grossular). These garnets effectively fill the voids within the Lu<sub>4</sub>Hf<sub>3</sub>O<sub>12</sub> ceramics, preventing further infiltration of the CFAS melts. As time progresses, the rate of the reaction gradually increases, while the rate of infiltration consistently decreases. Consequently, a relatively stable corrosion layer is achieved, effectively impeding further corrosion.</p>","PeriodicalId":13903,"journal":{"name":"International Journal of Applied Ceramic Technology","volume":"21 6","pages":"4216-4227"},"PeriodicalIF":1.8000,"publicationDate":"2024-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Applied Ceramic Technology","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/ijac.14827","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, CERAMICS","Score":null,"Total":0}
引用次数: 0

Abstract

In this work, the corrosion behavior of rare-earth Lu4Hf3O12 ceramic when exposed to a CaO-FeO1.5-AlO1.5-SiO2 (CFAS) environment at a temperature of 1400°C was investigated, with a focus on exploring the associated phase transformation, microstructure evolution, and corrosion reaction mechanism. Results reveal that during the corrosion process, the CFAS melt infiltrates Lu4Hf3O12 particles through cracks, resulting in the formation of a continuous reaction layer. This reaction leads to the generation of several high-melting-point garnets, including HfO2, Lu3Al5O12, Ca3Fe2(SiO4)3 (Ca-Fe garnet), and Ca3Al2Si3O12 (Grossular). These garnets effectively fill the voids within the Lu4Hf3O12 ceramics, preventing further infiltration of the CFAS melts. As time progresses, the rate of the reaction gradually increases, while the rate of infiltration consistently decreases. Consequently, a relatively stable corrosion layer is achieved, effectively impeding further corrosion.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
1400°C 下 Lu4Hf3O12 陶瓷的钙铁铝硅(CFAS)腐蚀行为
本文研究了稀土 Lu4Hf3O12 陶瓷在 1400°C 的 CaO-FeO1.5-AlO1.5-SiO2 (CFAS) 环境中的腐蚀行为,重点探讨了相关的相变、微观结构演变和腐蚀反应机理。结果表明,在腐蚀过程中,CFAS 熔体通过裂缝渗入 Lu4Hf3O12 颗粒,形成连续的反应层。这种反应导致生成了几种高熔点石榴石,包括 HfO2、Lu3Al5O12、Ca3Fe2(SiO4)3(钙铁石榴石)和 Ca3Al2Si3O12(毛石榴石)。这些石榴石有效地填充了 Lu4Hf3O12 陶瓷内部的空隙,阻止了 CFAS 熔体的进一步渗入。随着时间的推移,反应速度逐渐加快,而渗透速度则持续降低。因此,形成了一个相对稳定的腐蚀层,有效地阻止了进一步的腐蚀。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
International Journal of Applied Ceramic Technology
International Journal of Applied Ceramic Technology 工程技术-材料科学:硅酸盐
CiteScore
3.90
自引率
9.50%
发文量
280
审稿时长
4.5 months
期刊介绍: The International Journal of Applied Ceramic Technology publishes cutting edge applied research and development work focused on commercialization of engineered ceramics, products and processes. The publication also explores the barriers to commercialization, design and testing, environmental health issues, international standardization activities, databases, and cost models. Designed to get high quality information to end-users quickly, the peer process is led by an editorial board of experts from industry, government, and universities. Each issue focuses on a high-interest, high-impact topic plus includes a range of papers detailing applications of ceramics. Papers on all aspects of applied ceramics are welcome including those in the following areas: Nanotechnology applications; Ceramic Armor; Ceramic and Technology for Energy Applications (e.g., Fuel Cells, Batteries, Solar, Thermoelectric, and HT Superconductors); Ceramic Matrix Composites; Functional Materials; Thermal and Environmental Barrier Coatings; Bioceramic Applications; Green Manufacturing; Ceramic Processing; Glass Technology; Fiber optics; Ceramics in Environmental Applications; Ceramics in Electronic, Photonic and Magnetic Applications;
期刊最新文献
Contents The crack‐healing behavior and oxidation resistance of Al2O3–ZrO2–SiB6 ceramic at 600–1200°C Fabrication and characterization of silicon carbide ceramic filtration media via recycling of waste red mud Piezo‐biphasic scaffold based on polycaprolactone containing BaTiO3 and hydroxyapatite nanoparticles using three‐dimensional printing for bone regeneration The effect of MnO2 additive on the microstructure and mechanical properties of magnesium aluminate spinel
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1