Edge-Oriented Adversarial Attack for Deep Gait Recognition

IF 11.6 2区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE International Journal of Computer Vision Pub Date : 2024-10-10 DOI:10.1007/s11263-024-02225-1
Saihui Hou, Zengbin Wang, Man Zhang, Chunshui Cao, Xu Liu, Yongzhen Huang
{"title":"Edge-Oriented Adversarial Attack for Deep Gait Recognition","authors":"Saihui Hou, Zengbin Wang, Man Zhang, Chunshui Cao, Xu Liu, Yongzhen Huang","doi":"10.1007/s11263-024-02225-1","DOIUrl":null,"url":null,"abstract":"<p>Gait recognition is a non-intrusive method that captures unique walking patterns without subject cooperation, which has emerged as a promising technique across various fields. Recent studies based on Deep Neural Networks (DNNs) have notably improved the performance, however, the potential vulnerability inherent in DNNs and their resistance to interference in practical gait recognition systems remain under-explored. To fill the gap, in this paper, we focus on imperceptible adversarial attack for deep gait recognition and propose an edge-oriented attack strategy tailored for silhouette-based approaches. Specifically, we make a pioneering attempt to explore the intrinsic characteristics of binary silhouettes, with a primary focus on injecting noise perturbations into the edge area. This simple yet effective solution enables sparse attack in both the spatial and temporal dimensions, which largely ensures imperceptibility and simultaneously achieves high success rate. In particular, our solution is built on a unified framework, allowing seamless switching between untargeted and targeted attack modes. Extensive experiments conducted on in-the-lab and in-the-wild benchmarks validate the effectiveness of our attack strategy and emphasize the necessity to study adversarial attack and defense strategy in the near future.\n</p>","PeriodicalId":13752,"journal":{"name":"International Journal of Computer Vision","volume":"54 1","pages":""},"PeriodicalIF":11.6000,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Computer Vision","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s11263-024-02225-1","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Gait recognition is a non-intrusive method that captures unique walking patterns without subject cooperation, which has emerged as a promising technique across various fields. Recent studies based on Deep Neural Networks (DNNs) have notably improved the performance, however, the potential vulnerability inherent in DNNs and their resistance to interference in practical gait recognition systems remain under-explored. To fill the gap, in this paper, we focus on imperceptible adversarial attack for deep gait recognition and propose an edge-oriented attack strategy tailored for silhouette-based approaches. Specifically, we make a pioneering attempt to explore the intrinsic characteristics of binary silhouettes, with a primary focus on injecting noise perturbations into the edge area. This simple yet effective solution enables sparse attack in both the spatial and temporal dimensions, which largely ensures imperceptibility and simultaneously achieves high success rate. In particular, our solution is built on a unified framework, allowing seamless switching between untargeted and targeted attack modes. Extensive experiments conducted on in-the-lab and in-the-wild benchmarks validate the effectiveness of our attack strategy and emphasize the necessity to study adversarial attack and defense strategy in the near future.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
针对深度步态识别的边缘对抗攻击
步态识别是一种非侵入式方法,它能在不需要受试者配合的情况下捕捉独特的行走模式,在各个领域已成为一种前景广阔的技术。最近基于深度神经网络(DNN)的研究显著提高了步态识别的性能,然而,DNN固有的潜在弱点及其在实际步态识别系统中的抗干扰能力仍未得到充分探索。为了填补这一空白,我们在本文中重点研究了深度步态识别中的不可感知对抗攻击,并提出了一种为基于剪影的方法量身定制的面向边缘的攻击策略。具体来说,我们开创性地尝试探索二进制剪影的内在特征,主要重点是向边缘区域注入噪声扰动。这种简单而有效的解决方案可以在空间和时间维度上进行稀疏攻击,在很大程度上确保了不可感知性,同时实现了高成功率。特别是,我们的解决方案建立在一个统一的框架上,允许在非目标和目标攻击模式之间无缝切换。在实验室和野外基准上进行的广泛实验验证了我们攻击策略的有效性,并强调了在不久的将来研究对抗性攻击和防御策略的必要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
International Journal of Computer Vision
International Journal of Computer Vision 工程技术-计算机:人工智能
CiteScore
29.80
自引率
2.10%
发文量
163
审稿时长
6 months
期刊介绍: The International Journal of Computer Vision (IJCV) serves as a platform for sharing new research findings in the rapidly growing field of computer vision. It publishes 12 issues annually and presents high-quality, original contributions to the science and engineering of computer vision. The journal encompasses various types of articles to cater to different research outputs. Regular articles, which span up to 25 journal pages, focus on significant technical advancements that are of broad interest to the field. These articles showcase substantial progress in computer vision. Short articles, limited to 10 pages, offer a swift publication path for novel research outcomes. They provide a quicker means for sharing new findings with the computer vision community. Survey articles, comprising up to 30 pages, offer critical evaluations of the current state of the art in computer vision or offer tutorial presentations of relevant topics. These articles provide comprehensive and insightful overviews of specific subject areas. In addition to technical articles, the journal also includes book reviews, position papers, and editorials by prominent scientific figures. These contributions serve to complement the technical content and provide valuable perspectives. The journal encourages authors to include supplementary material online, such as images, video sequences, data sets, and software. This additional material enhances the understanding and reproducibility of the published research. Overall, the International Journal of Computer Vision is a comprehensive publication that caters to researchers in this rapidly growing field. It covers a range of article types, offers additional online resources, and facilitates the dissemination of impactful research.
期刊最新文献
Sample-Cohesive Pose-Aware Contrastive Facial Representation Learning Learning with Enriched Inductive Biases for Vision-Language Models Image Synthesis Under Limited Data: A Survey and Taxonomy Dual-Space Video Person Re-identification SeaFormer++: Squeeze-Enhanced Axial Transformer for Mobile Visual Recognition
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1