Interfacial Strain-Insensitive Thermal and Electrical Stability of (K,Na)NbO3-Based Lead-Free Ferroelectric Films

IF 3.3 3区 化学 Q2 CHEMISTRY, PHYSICAL The Journal of Physical Chemistry C Pub Date : 2024-10-11 DOI:10.1021/acs.jpcc.4c03280
Beibei Zhu, Zhengyang Kong, Hexuan Cheng, Kun Han, Pingfan Chen, Ke Wang, Haibo Zhang, Junya Wang, Zhen Huang, Wenbin Wu, Liqiang Xu, Feng Chen
{"title":"Interfacial Strain-Insensitive Thermal and Electrical Stability of (K,Na)NbO3-Based Lead-Free Ferroelectric Films","authors":"Beibei Zhu, Zhengyang Kong, Hexuan Cheng, Kun Han, Pingfan Chen, Ke Wang, Haibo Zhang, Junya Wang, Zhen Huang, Wenbin Wu, Liqiang Xu, Feng Chen","doi":"10.1021/acs.jpcc.4c03280","DOIUrl":null,"url":null,"abstract":"Despite the inherent strain relaxation in perovskite-type oxide ferroelectric films that occurs beyond a certain thickness, the interfacial states, including carrier and strain, can still influence their electrical properties. This study explores the impact of different (La<sub>0.67</sub>,Sr<sub>0.33</sub>)MnO<sub>3</sub> (LSMO)-coated perovskite-type oxide substrates on the electrical performance of (K,Na)NbO<sub>3</sub> (KNN)-based ferroelectric films. Specifically, 200 nm-thick epitaxial KNN-based films were grown on four distinct substrates: (001)-oriented KTaO<sub>3</sub>, SrTiO<sub>3</sub>, LaAlO<sub>3</sub>, and YAlO<sub>3</sub>. Notably, the lattice constants of the KNN-based films remained unchanged, despite the varying lattice constants of their substrates. The electrical properties of these films were found to be insensitive to the underlying substrate. All films displayed comparable hysteresis loops and frequency-dependent dielectric curves, with a consistent remnant polarization of ∼63 μC/cm<sup>2</sup> and a dielectric constant of ∼1250 at 1 kHz. Furthermore, the KNN-based films demonstrated exceptional thermal stability. They showed resilience under multiple switching cycles and maintained stable ferroelectricity up to a high temperature of 100 °C. These observations underscore the high electrical and thermal stability of KNN-based ferroelectric films, suggesting their promising potential for applications in electronic devices. This research highlights the robustness and versatility of KNN-based ferroelectric films, which could pave the way for their integration into advanced electronic technologies.","PeriodicalId":61,"journal":{"name":"The Journal of Physical Chemistry C","volume":"65 1","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2024-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Physical Chemistry C","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1021/acs.jpcc.4c03280","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Despite the inherent strain relaxation in perovskite-type oxide ferroelectric films that occurs beyond a certain thickness, the interfacial states, including carrier and strain, can still influence their electrical properties. This study explores the impact of different (La0.67,Sr0.33)MnO3 (LSMO)-coated perovskite-type oxide substrates on the electrical performance of (K,Na)NbO3 (KNN)-based ferroelectric films. Specifically, 200 nm-thick epitaxial KNN-based films were grown on four distinct substrates: (001)-oriented KTaO3, SrTiO3, LaAlO3, and YAlO3. Notably, the lattice constants of the KNN-based films remained unchanged, despite the varying lattice constants of their substrates. The electrical properties of these films were found to be insensitive to the underlying substrate. All films displayed comparable hysteresis loops and frequency-dependent dielectric curves, with a consistent remnant polarization of ∼63 μC/cm2 and a dielectric constant of ∼1250 at 1 kHz. Furthermore, the KNN-based films demonstrated exceptional thermal stability. They showed resilience under multiple switching cycles and maintained stable ferroelectricity up to a high temperature of 100 °C. These observations underscore the high electrical and thermal stability of KNN-based ferroelectric films, suggesting their promising potential for applications in electronic devices. This research highlights the robustness and versatility of KNN-based ferroelectric films, which could pave the way for their integration into advanced electronic technologies.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于 (K,Na)NbO3 的无铅铁电薄膜的界面应变敏感型热稳定性和电稳定性
尽管包晶型氧化物铁电薄膜在超过一定厚度后会发生固有的应变松弛,但包括载流子和应变在内的界面状态仍会影响其电气性能。本研究探讨了不同的(La0.67,Sr0.33)MnO3(LSMO)包覆包晶型氧化物基底对(K,Na)NbO3(KNN)基铁电薄膜电性能的影响。具体来说,在四种不同的基底上生长了 200 nm 厚的基于 KNN 的外延薄膜:取向 (001) 的 KTaO3、SrTiO3、LaAlO3 和 YAlO3。值得注意的是,尽管基底的晶格常数不同,但 KNN 基薄膜的晶格常数保持不变。研究发现,这些薄膜的电学特性对基底不敏感。所有薄膜都显示出相似的滞后环和随频率变化的介电曲线,在 1 kHz 时,残余极化为 ∼63 μC/cm2,介电常数为 ∼1250。此外,基于 KNN 的薄膜还表现出卓越的热稳定性。它们在多次开关循环中表现出良好的适应性,并在 100 °C 的高温下保持稳定的铁电性。这些观察结果表明,基于 KNN 的铁电薄膜具有很高的电稳定性和热稳定性,表明它们在电子设备中的应用潜力巨大。这项研究凸显了基于 KNN 的铁电薄膜的坚固性和多功能性,这将为它们融入先进的电子技术铺平道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
The Journal of Physical Chemistry C
The Journal of Physical Chemistry C 化学-材料科学:综合
CiteScore
6.50
自引率
8.10%
发文量
2047
审稿时长
1.8 months
期刊介绍: The Journal of Physical Chemistry A/B/C is devoted to reporting new and original experimental and theoretical basic research of interest to physical chemists, biophysical chemists, and chemical physicists.
期刊最新文献
Ultrastable Pt/Zn-Doped-Al2O3 Catalyst for Propane Dehydrogenation Anisotropic Interlayer Force Field for Heterogeneous Interfaces of Graphene and h-BN with Transition Metal Dichalcogenides Understanding the Origin of the Redox Potential Shift of Transition Metal in LiFexMn1–xPO4 Cathodes by the Molecular Orbital Theory Magnesium Ferrite Promoting the Purity of Grown Boron Nitride Nanotubes Issue Editorial Masthead
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1