Artificial photosynthetic system for diluted CO2 reduction in gas-solid phase

IF 14.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES Nature Communications Pub Date : 2024-10-11 DOI:10.1038/s41467-024-53066-y
Ya Wang, Jian-Xin Wei, Hong-Liang Tang, Lu-Hua Shao, Long-Zhang Dong, Xiao-Yu Chu, Yan-Xia Jiang, Gui-Ling Zhang, Feng-Ming Zhang, Ya-Qian Lan
{"title":"Artificial photosynthetic system for diluted CO2 reduction in gas-solid phase","authors":"Ya Wang, Jian-Xin Wei, Hong-Liang Tang, Lu-Hua Shao, Long-Zhang Dong, Xiao-Yu Chu, Yan-Xia Jiang, Gui-Ling Zhang, Feng-Ming Zhang, Ya-Qian Lan","doi":"10.1038/s41467-024-53066-y","DOIUrl":null,"url":null,"abstract":"<p>Rational design of robust photocatalytic systems to direct capture and in-situ convert diluted CO<sub>2</sub> from flue gas is a promising but challenging way to achieve carbon neutrality. Here, we report a new type of host-guest photocatalysts by integrating CO<sub>2</sub>-enriching ionic liquids and photoactive metal-organic frameworks PCN-250-Fe<sub>2</sub>M (M = Fe, Co, Ni, Zn, Mn) for artificial photosynthetic diluted CO<sub>2</sub> reduction in gas-solid phase. As a result, [Emim]BF<sub>4</sub>(39.3 wt%)@PCN-250-Fe<sub>2</sub>Co exhibits a record high CO<sub>2</sub>-to-CO reduction rate of 313.34 μmol g<sup>−1</sup> h<sup>−1</sup> under pure CO<sub>2</sub> atmosphere and 153.42 μmol g<sup>−1</sup> h<sup>−1</sup> under diluted CO<sub>2</sub> (15%) with about 100% selectivity. In scaled-up experiments with 1.0 g catalyst and natural sunlight irradiation, the concentration of pure and diluted CO<sub>2</sub> (15%) could be significantly decreased to below 85% and 10%, respectively, indicating its industrial application potential. Further experiments and theoretical calculations reveal that ionic liquids not only benefit CO<sub>2</sub> enrichment, but also form synergistic effect with Co<sup>2+</sup> sites in PCN-250-Fe<sub>2</sub>Co, resulting in a significant reduction in Gibbs energy barrier during the rate-determining step of CO<sub>2</sub>-to-CO conversion.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":null,"pages":null},"PeriodicalIF":14.7000,"publicationDate":"2024-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-024-53066-y","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Rational design of robust photocatalytic systems to direct capture and in-situ convert diluted CO2 from flue gas is a promising but challenging way to achieve carbon neutrality. Here, we report a new type of host-guest photocatalysts by integrating CO2-enriching ionic liquids and photoactive metal-organic frameworks PCN-250-Fe2M (M = Fe, Co, Ni, Zn, Mn) for artificial photosynthetic diluted CO2 reduction in gas-solid phase. As a result, [Emim]BF4(39.3 wt%)@PCN-250-Fe2Co exhibits a record high CO2-to-CO reduction rate of 313.34 μmol g−1 h−1 under pure CO2 atmosphere and 153.42 μmol g−1 h−1 under diluted CO2 (15%) with about 100% selectivity. In scaled-up experiments with 1.0 g catalyst and natural sunlight irradiation, the concentration of pure and diluted CO2 (15%) could be significantly decreased to below 85% and 10%, respectively, indicating its industrial application potential. Further experiments and theoretical calculations reveal that ionic liquids not only benefit CO2 enrichment, but also form synergistic effect with Co2+ sites in PCN-250-Fe2Co, resulting in a significant reduction in Gibbs energy barrier during the rate-determining step of CO2-to-CO conversion.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
气固相稀释二氧化碳还原人工光合系统
合理设计稳健的光催化系统来直接捕获和原位转化烟道气中稀释的二氧化碳,是实现碳中和的一种前景广阔但极具挑战性的方法。在此,我们报告了一种新型的主客体光催化剂,它将富含二氧化碳的离子液体和光活性金属有机框架 PCN-250-Fe2M(M = Fe、Co、Ni、Zn、Mn)整合在一起,用于气固相人工光合稀释二氧化碳还原。结果,[Emim]BF4(39.3 wt%)@PCN-250-Fe2Co 在纯 CO2 环境下的 CO2 对 CO 还原率达到了创纪录的高水平,为 313.34 μmol g-1 h-1;在稀释 CO2(15%)环境下的 CO2 对 CO 还原率为 153.42 μmol g-1 h-1,选择性约为 100%。在使用 1.0 克催化剂和自然光照射的放大实验中,纯 CO2 和稀释 CO2(15%)的浓度可分别显著降至 85% 和 10% 以下,这表明其具有工业应用潜力。进一步的实验和理论计算表明,离子液体不仅有利于二氧化碳的富集,还能与 PCN-250-Fe2Co 中的 Co2+ 位点形成协同效应,从而显著降低二氧化碳转化为 CO 的速率决定步骤中的吉布斯能垒。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Nature Communications
Nature Communications Biological Science Disciplines-
CiteScore
24.90
自引率
2.40%
发文量
6928
审稿时长
3.7 months
期刊介绍: Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.
期刊最新文献
A metagenomic catalogue of the ruminant gut archaeome. Detecting biological motion signals in human and monkey superior colliculus: a subcortical-cortical pathway for biological motion perception. Enhanced production of 60Fe in massive stars. Scalable robust photothermal superhydrophobic coatings for efficient anti-icing and de-icing in simulated/real environments. Ultrafast complete dechlorination enabled by ferrous oxide/graphene oxide catalytic membranes via nanoconfinement advanced reduction.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1