Analytical Evaluation of Ground State Gradients in Quantum Electrodynamics Coupled Cluster Theory.

IF 5.7 1区 化学 Q2 CHEMISTRY, PHYSICAL Journal of Chemical Theory and Computation Pub Date : 2024-10-22 Epub Date: 2024-10-11 DOI:10.1021/acs.jctc.4c00763
Marcus T Lexander, Sara Angelico, Eirik F Kjønstad, Henrik Koch
{"title":"Analytical Evaluation of Ground State Gradients in Quantum Electrodynamics Coupled Cluster Theory.","authors":"Marcus T Lexander, Sara Angelico, Eirik F Kjønstad, Henrik Koch","doi":"10.1021/acs.jctc.4c00763","DOIUrl":null,"url":null,"abstract":"<p><p>Analytical gradients of potential energy surfaces play a central role in quantum chemistry, allowing for molecular geometry optimizations and molecular dynamics simulations. In strong coupling conditions, potential energy surfaces can account for strong interactions between matter and the quantized electromagnetic field. In this paper, we derive expressions for the ground state analytical gradients in quantum electrodynamics coupled cluster theory. We also present a Cholesky-based implementation for the coupled cluster singles and doubles model. We report timings to show the performance of the implementation and present optimized geometries to highlight cavity-induced molecular orientation effects in strong coupling conditions.</p>","PeriodicalId":45,"journal":{"name":"Journal of Chemical Theory and Computation","volume":null,"pages":null},"PeriodicalIF":5.7000,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemical Theory and Computation","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.jctc.4c00763","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/11 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Analytical gradients of potential energy surfaces play a central role in quantum chemistry, allowing for molecular geometry optimizations and molecular dynamics simulations. In strong coupling conditions, potential energy surfaces can account for strong interactions between matter and the quantized electromagnetic field. In this paper, we derive expressions for the ground state analytical gradients in quantum electrodynamics coupled cluster theory. We also present a Cholesky-based implementation for the coupled cluster singles and doubles model. We report timings to show the performance of the implementation and present optimized geometries to highlight cavity-induced molecular orientation effects in strong coupling conditions.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
量子电动力学耦合簇理论中基态梯度的分析评估。
势能面的分析梯度在量子化学中发挥着核心作用,可用于分子几何优化和分子动力学模拟。在强耦合条件下,势能面可以解释物质与量子化电磁场之间的强相互作用。本文推导了量子电动力学耦合簇理论中基态分析梯度的表达式。我们还介绍了基于 Cholesky 的耦合簇单倍和双倍模型的实现。我们报告了时间,以显示实现的性能,并提出了优化的几何图形,以突出强耦合条件下空腔诱导的分子取向效应。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Chemical Theory and Computation
Journal of Chemical Theory and Computation 化学-物理:原子、分子和化学物理
CiteScore
9.90
自引率
16.40%
发文量
568
审稿时长
1 months
期刊介绍: The Journal of Chemical Theory and Computation invites new and original contributions with the understanding that, if accepted, they will not be published elsewhere. Papers reporting new theories, methodology, and/or important applications in quantum electronic structure, molecular dynamics, and statistical mechanics are appropriate for submission to this Journal. Specific topics include advances in or applications of ab initio quantum mechanics, density functional theory, design and properties of new materials, surface science, Monte Carlo simulations, solvation models, QM/MM calculations, biomolecular structure prediction, and molecular dynamics in the broadest sense including gas-phase dynamics, ab initio dynamics, biomolecular dynamics, and protein folding. The Journal does not consider papers that are straightforward applications of known methods including DFT and molecular dynamics. The Journal favors submissions that include advances in theory or methodology with applications to compelling problems.
期刊最新文献
Changing Your Martini Can Still Give You a Hangover. Minimum Tracking Linear Response Hubbard and Hund Corrected Density Functional Theory in CP2K. Δ-Machine Learning to Elevate DFT-Based Potentials and a Force Field to the CCSD(T) Level Illustrated for Ethanol. Comparison of Matrix Product State and Multiconfiguration Time-Dependent Hartree Methods for Nonadiabatic Dynamics of Exciton Dissociation. Response Matching for Generating Materials and Molecules.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1