Unveiling the Dual Role of Oxophilic Cr4+ in Cr−Cu2O Nanosheet Arrays for Enhanced Nitrate Electroreduction to Ammonia

IF 16.1 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Angewandte Chemie International Edition Pub Date : 2024-10-11 DOI:10.1002/anie.202411796
Kai Zhang, Bo Li, Fengchen Guo, Prof. Dr. Nigel Graham, Wenhui He, Prof. Dr. Wenzheng Yu
{"title":"Unveiling the Dual Role of Oxophilic Cr4+ in Cr−Cu2O Nanosheet Arrays for Enhanced Nitrate Electroreduction to Ammonia","authors":"Kai Zhang,&nbsp;Bo Li,&nbsp;Fengchen Guo,&nbsp;Prof. Dr. Nigel Graham,&nbsp;Wenhui He,&nbsp;Prof. Dr. Wenzheng Yu","doi":"10.1002/anie.202411796","DOIUrl":null,"url":null,"abstract":"<p>Cuprous oxide (Cu<sub>2</sub>O)-based catalysts present a promising activity for the electrochemical nitrate (NO<sub>3</sub><sup>−</sup>) reduction to ammonia (eNO<sub>3</sub>RA), but the electrochemical instability of Cu<sup>+</sup> species may lead to an unsatisfactory durability, hindering the exploration of the structure-performance relationship. Herein, we propose an efficient strategy to stabilize Cu<sup>+</sup> through the incorporation of Cr<sup>4+</sup> into the Cu<sub>2</sub>O matrix to construct a Cr<sup>4+</sup>−O−Cu<sup>+</sup> network structure. In situ and quasi-in situ characterizations reveal that the Cu<sup>+</sup> species are well maintained via the strong Cr<sup>4+</sup>−O−Cu<sup>+</sup> interaction that inhibits the leaching of lattice oxygen. Importantly, in situ generated Cr<sup>3+</sup>−O−Cu<sup>+</sup> from Cr<sup>4+</sup>−O−Cu<sup>+</sup> is identified as a dual-active site for eNO<sub>3</sub>RA, wherein the Cu<sup>+</sup> sites are responsible for the activation of N-containing intermediates, while the assisting Cr<sup>3+</sup> centers serve as the electron-proton mediators for rapid water dissociation. Theoretical investigations further demonstrated that the metastable state Cr<sup>3+</sup>−O−Cu<sup>+</sup> favors the conversion from the endoergic hydrogenation of the key *ON intermediate to an exoergic reaction in an ONH pathway, and facilitates the subsequent NH<sub>3</sub> desorption with a low energy barrier. The superior eNO<sub>3</sub>RA with a maximum 91.6 % Faradaic efficiency could also be coupled with anodic sulfion oxidation to achieve concurrent NH<sub>3</sub> production and sulfur recovery with reduced energy input.</p>","PeriodicalId":125,"journal":{"name":"Angewandte Chemie International Edition","volume":"63 52","pages":""},"PeriodicalIF":16.1000,"publicationDate":"2024-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angewandte Chemie International Edition","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/anie.202411796","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Cuprous oxide (Cu2O)-based catalysts present a promising activity for the electrochemical nitrate (NO3) reduction to ammonia (eNO3RA), but the electrochemical instability of Cu+ species may lead to an unsatisfactory durability, hindering the exploration of the structure-performance relationship. Herein, we propose an efficient strategy to stabilize Cu+ through the incorporation of Cr4+ into the Cu2O matrix to construct a Cr4+−O−Cu+ network structure. In situ and quasi-in situ characterizations reveal that the Cu+ species are well maintained via the strong Cr4+−O−Cu+ interaction that inhibits the leaching of lattice oxygen. Importantly, in situ generated Cr3+−O−Cu+ from Cr4+−O−Cu+ is identified as a dual-active site for eNO3RA, wherein the Cu+ sites are responsible for the activation of N-containing intermediates, while the assisting Cr3+ centers serve as the electron-proton mediators for rapid water dissociation. Theoretical investigations further demonstrated that the metastable state Cr3+−O−Cu+ favors the conversion from the endoergic hydrogenation of the key *ON intermediate to an exoergic reaction in an ONH pathway, and facilitates the subsequent NH3 desorption with a low energy barrier. The superior eNO3RA with a maximum 91.6 % Faradaic efficiency could also be coupled with anodic sulfion oxidation to achieve concurrent NH3 production and sulfur recovery with reduced energy input.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
揭示 Cr-Cu2O 纳米片阵列中亲氧 Cr4+ 在增强硝酸盐电还原成氨方面的双重作用
基于氧化亚铜(Cu2O)的催化剂在电化学将硝酸盐(NO3-)还原为氨气(eNO3RA)的过程中具有良好的活性,但 Cu+ 物种的电化学不稳定性可能会导致催化剂的耐久性不尽如人意,从而阻碍了对结构-性能关系的探索。在此,我们提出了一种通过在 Cu2O 基体中加入 Cr4+ 构建 Cr4+-O-Cu+ 网络结构来稳定 Cu+ 的有效策略。原位和准原位特性分析表明,Cu+物种通过Cr4+-O-Cu+的强相互作用得到了很好的维持,从而抑制了晶格氧的沥滤。重要的是,从 Cr4+-O-Cu+ 原位生成的 Cr3+-O-Cu+ 被确定为 eNO3RA 的双重活性位点,其中 Cu+ 位点负责激活含 N 中间体,而辅助 Cr3+ 中心则作为电子质子介质促进水的快速解离。理论研究进一步证明,蜕变态 Cr3+-O-Cu+ 有利于将关键 *ON 中间体的内能氢化转化为 ONH 途径中的外能反应,并以较低的能障促进随后的 NH3 解吸。卓越的 eNO3RA(法拉第效率最高可达 91.6%)还可与阳极硫氧化反应相结合,在减少能量输入的同时实现 NH3 生产和硫回收。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
26.60
自引率
6.60%
发文量
3549
审稿时长
1.5 months
期刊介绍: Angewandte Chemie, a journal of the German Chemical Society (GDCh), maintains a leading position among scholarly journals in general chemistry with an impressive Impact Factor of 16.6 (2022 Journal Citation Reports, Clarivate, 2023). Published weekly in a reader-friendly format, it features new articles almost every day. Established in 1887, Angewandte Chemie is a prominent chemistry journal, offering a dynamic blend of Review-type articles, Highlights, Communications, and Research Articles on a weekly basis, making it unique in the field.
期刊最新文献
Lucas Foppa Fluorination from Surface to Bulk Stabilizing High Nickel Cathode Materials with Outstanding Electrochemical Performance Benzyl Ammonium Carbamates Undergo Two-Step Linker Cleavage and Improve the Properties of Antibody Conjugates Angewandte Chemie: One Journal, Many Faces Jordan Hobbs
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1