Fabrication of sodium alginate doped phosphoric acid composite hydrogel and its application of the adsorption of La (III) in wastewater

IF 3.8 2区 化学 Q1 BIOCHEMICAL RESEARCH METHODS Journal of Chromatography A Pub Date : 2024-10-06 DOI:10.1016/j.chroma.2024.465425
Jiaxin Duan, Wenting Li, Yun Wei
{"title":"Fabrication of sodium alginate doped phosphoric acid composite hydrogel and its application of the adsorption of La (III) in wastewater","authors":"Jiaxin Duan,&nbsp;Wenting Li,&nbsp;Yun Wei","doi":"10.1016/j.chroma.2024.465425","DOIUrl":null,"url":null,"abstract":"<div><div>Recycling rare earth ions from wastewater is an important task, as rare earth elements have a wide range of applications and can cause harm to the environment if discharged arbitrarily. In this work, a simple and inexpensive hydroxyethylidene diphosphate-based adsorbent (SA@HEDP) for adsorbing lanthanum was designed and fabricated. The adsorbent SA@HEDP with the surface rich in phosphate and hydroxyl functional groups provided active sites for adsorption of lanthanum. Research on adsorption performance was conducted by testing the amount of HEDP added, the amount of adsorbent used, the effect of initial pH of La (III), adsorption time, and temperature. The results showed that the adsorption capacity of the adsorbent was 158.0 mg/g. Adsorption of La (III) in real wastewater was tested, when the initial concentration of La (III) was 319.2 mg/L, it could be basically all recovered through three adsorption processes. SEM, EDS mapping, XPS, FTIR, and Zeta potential were used to characterize and analyze the mechanism, and mass transfer kinetics was used to analyze the adsorption process of the adsorbent for La (III).</div></div>","PeriodicalId":347,"journal":{"name":"Journal of Chromatography A","volume":"1736 ","pages":"Article 465425"},"PeriodicalIF":3.8000,"publicationDate":"2024-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chromatography A","FirstCategoryId":"1","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021967324007994","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

Recycling rare earth ions from wastewater is an important task, as rare earth elements have a wide range of applications and can cause harm to the environment if discharged arbitrarily. In this work, a simple and inexpensive hydroxyethylidene diphosphate-based adsorbent (SA@HEDP) for adsorbing lanthanum was designed and fabricated. The adsorbent SA@HEDP with the surface rich in phosphate and hydroxyl functional groups provided active sites for adsorption of lanthanum. Research on adsorption performance was conducted by testing the amount of HEDP added, the amount of adsorbent used, the effect of initial pH of La (III), adsorption time, and temperature. The results showed that the adsorption capacity of the adsorbent was 158.0 mg/g. Adsorption of La (III) in real wastewater was tested, when the initial concentration of La (III) was 319.2 mg/L, it could be basically all recovered through three adsorption processes. SEM, EDS mapping, XPS, FTIR, and Zeta potential were used to characterize and analyze the mechanism, and mass transfer kinetics was used to analyze the adsorption process of the adsorbent for La (III).

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
海藻酸钠掺杂磷酸复合水凝胶的制备及其在废水中 La (III) 吸附中的应用。
从废水中回收稀土离子是一项重要任务,因为稀土元素应用广泛,如果随意排放会对环境造成危害。本研究设计并制造了一种简单、廉价的羟基亚乙基二磷酸吸附剂(SA@HEDP),用于吸附镧。表面富含磷酸和羟基官能团的吸附剂 SA@HEDP 为镧的吸附提供了活性位点。通过测试 HEDP 的添加量、吸附剂的用量、La (III) 的初始 pH 值、吸附时间和温度的影响,对吸附性能进行了研究。结果表明,吸附剂的吸附容量为 158.0 毫克/克。对实际废水中 La(III)的吸附进行了测试,当 La(III)的初始浓度为 319.2 mg/L 时,经过三个吸附过程,基本上可以全部回收。利用扫描电镜、EDS 图谱、XPS、傅立叶变换红外光谱和 Zeta 电位来表征和分析其机理,并利用传质动力学来分析吸附剂对 La (III) 的吸附过程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Chromatography A
Journal of Chromatography A 化学-分析化学
CiteScore
7.90
自引率
14.60%
发文量
742
审稿时长
45 days
期刊介绍: The Journal of Chromatography A provides a forum for the publication of original research and critical reviews on all aspects of fundamental and applied separation science. The scope of the journal includes chromatography and related techniques, electromigration techniques (e.g. electrophoresis, electrochromatography), hyphenated and other multi-dimensional techniques, sample preparation, and detection methods such as mass spectrometry. Contributions consist mainly of research papers dealing with the theory of separation methods, instrumental developments and analytical and preparative applications of general interest.
期刊最新文献
Multi–class cyanobacterial toxin analysis using hydrophilic interaction liquid chromatography–mass spectrometry In situ growth of hierarchical porous covalent organic framework coating for enhanced solid-phase microextraction of phenolic compounds Understanding the fundamentals of the on-off retention mechanism of oligonucleotides and their application to high throughput analysis Optimizing conditions in online RPLC × SFC for the analysis of complex samples containing neutral compounds: Solving injection issues. Designing boron-doped carbon dot-functionalized COFs for fluorescence screening and liquid chromatography tandem mass spectrometry detection of toxins
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1