N Plomp, L Liu, L Walters, C Bus-Spoor, M T Khan, P O Sheridan, A C M Veloo, A W Walker, H J M Harmsen, E Tsompanidou
{"title":"A convenient and versatile culturomics platform to expand the human gut culturome of Lachnospiraceae and Oscillospiraceae.","authors":"N Plomp, L Liu, L Walters, C Bus-Spoor, M T Khan, P O Sheridan, A C M Veloo, A W Walker, H J M Harmsen, E Tsompanidou","doi":"10.1163/18762891-bja00042","DOIUrl":null,"url":null,"abstract":"<p><p>The human gut microbiota is increasingly being recognised to play an important role in maintaining health. The families Lachnospiraceae and Oscillospiraceae in particular, are often reduced in disease states but are relatively poorly represented in culture collections. Cultured representatives are required to investigate the physiology and host interactions of gut microbes. Establishing cultured isolate collections can be laborious and expensive owing to the fastidious growth requirements of these organisms and the costs associated with taxonomic classification. This study proposes a culturomics platform combining a single basal culture medium with matrix-assisted laser adsorption/ionisation coupled to time-of-flight mass spectrometry (MALDI-TOF MS) for fast and reliable isolation and identification of hundreds of novel isolates. In this study, basal YCFA medium supplemented with either glucose, apple pectin, or porcine mucin was used to cultivate a total of 724 different isolates derived from only 11 different faecal samples from healthy volunteers, of which 389 isolates belonged to the Lachnospiraceae and Oscillospiraceae families. Moreover, 27 isolates could not be assigned to known species based on their 16S rRNA gene, 17 of which may even represent novel genera. To aid MALDI-TOF MS identification of gut bacteria, the commercial database was complemented with the MaldiGut database presented here, containing a collection of 132 different Main Spectrum Profiles, including the profiles of 125 Firmicutes species, 3 Bacteroidetes species, 3 Actinobacteria species, and one Verrucomicrobia species. The culturomics platform and MaldiGut database presented here will enable further expansion of the gut culturome, especially within the understudied Lachnospiraceae and Oscillospiraceae families.</p>","PeriodicalId":8834,"journal":{"name":"Beneficial microbes","volume":" ","pages":"51-66"},"PeriodicalIF":3.0000,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Beneficial microbes","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1163/18762891-bja00042","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The human gut microbiota is increasingly being recognised to play an important role in maintaining health. The families Lachnospiraceae and Oscillospiraceae in particular, are often reduced in disease states but are relatively poorly represented in culture collections. Cultured representatives are required to investigate the physiology and host interactions of gut microbes. Establishing cultured isolate collections can be laborious and expensive owing to the fastidious growth requirements of these organisms and the costs associated with taxonomic classification. This study proposes a culturomics platform combining a single basal culture medium with matrix-assisted laser adsorption/ionisation coupled to time-of-flight mass spectrometry (MALDI-TOF MS) for fast and reliable isolation and identification of hundreds of novel isolates. In this study, basal YCFA medium supplemented with either glucose, apple pectin, or porcine mucin was used to cultivate a total of 724 different isolates derived from only 11 different faecal samples from healthy volunteers, of which 389 isolates belonged to the Lachnospiraceae and Oscillospiraceae families. Moreover, 27 isolates could not be assigned to known species based on their 16S rRNA gene, 17 of which may even represent novel genera. To aid MALDI-TOF MS identification of gut bacteria, the commercial database was complemented with the MaldiGut database presented here, containing a collection of 132 different Main Spectrum Profiles, including the profiles of 125 Firmicutes species, 3 Bacteroidetes species, 3 Actinobacteria species, and one Verrucomicrobia species. The culturomics platform and MaldiGut database presented here will enable further expansion of the gut culturome, especially within the understudied Lachnospiraceae and Oscillospiraceae families.
期刊介绍:
Beneficial Microbes is a peer-reviewed scientific journal with a specific area of focus: the promotion of the science of microbes beneficial to the health and wellbeing of man and animal. The journal contains original research papers and critical reviews in all areas dealing with beneficial microbes in both the small and large intestine, together with opinions, a calendar of forthcoming beneficial microbes-related events and book reviews. The journal takes a multidisciplinary approach and focuses on a broad spectrum of issues, including safety aspects of pro- & prebiotics, regulatory aspects, mechanisms of action, health benefits for the host, optimal production processes, screening methods, (meta)genomics, proteomics and metabolomics, host and bacterial physiology, application, and role in health and disease in man and animal. Beneficial Microbes is intended to serve the needs of researchers and professionals from the scientific community and industry, as well as those of policy makers and regulators.
The journal will have five major sections:
* Food, nutrition and health
* Animal nutrition
* Processing and application
* Regulatory & safety aspects
* Medical & health applications
In these sections, topics dealt with by Beneficial Microbes include:
* Worldwide safety and regulatory issues
* Human and animal nutrition and health effects
* Latest discoveries in mechanistic studies and screening methods to unravel mode of action
* Host physiology related to allergy, inflammation, obesity, etc.
* Trends in application of (meta)genomics, proteomics and metabolomics
* New developments in how processing optimizes pro- & prebiotics for application
* Bacterial physiology related to health benefits