Sita Manasa Susarla, Oliver Fiehn, Ines Thiele, Amanda L Ngo, Dinesh K Barupal, Rana F Chehab, Assiamira Ferrara, Yeyi Zhu
{"title":"Microbiome-derived metabolites in early to mid-pregnancy and risk of gestational diabetes: a metabolome-wide association study.","authors":"Sita Manasa Susarla, Oliver Fiehn, Ines Thiele, Amanda L Ngo, Dinesh K Barupal, Rana F Chehab, Assiamira Ferrara, Yeyi Zhu","doi":"10.1186/s12916-024-03606-6","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Pre-diagnostic disturbances in the microbiome-derived metabolome have been associated with an increased risk of diabetes in non-pregnant populations. However, the roles of microbiome-derived metabolites, the end-products of microbial metabolism, in gestational diabetes (GDM) remain understudied. We examined the prospective association of microbiome-derived metabolites in early to mid-pregnancy with GDM risk in a diverse population.</p><p><strong>Methods: </strong>We conducted a prospective discovery and validation study, including a case-control sample of 91 GDM and 180 non-GDM individuals within the multi-racial/ethnic The Pregnancy Environment and Lifestyle Study (PETALS) as the discovery set, a random sample from the PETALS (42 GDM, 372 non-GDM) as validation set 1, and a case-control sample (35 GDM, 70 non-GDM) from the Gestational Weight Gain and Optimal Wellness randomized controlled trial as validation set 2. We measured untargeted fasting serum metabolomics at gestational weeks (GW) 10-13 and 16-19 by gas chromatography/time-of-flight mass spectrometry (TOF-MS), liquid chromatography (LC)/quadrupole TOF-MS, and hydrophilic interaction LC/quadrupole TOF-MS. GDM was diagnosed using the 3-h, 100-g oral glucose tolerance test according to the Carpenter-Coustan criteria around GW 24-28.</p><p><strong>Results: </strong>Among 1362 annotated compounds, we identified 140 of gut microbiome metabolism origin. Multivariate enrichment analysis illustrated that carbocyclic acids and branched-chain amino acid clusters at GW 10-13 and the unsaturated fatty acids cluster at GW 16-19 were positively associated with GDM risk (FDR < 0.05). At GW 10-13, the prediction model that combined conventional risk factors and LASSO-selected microbiome-derived metabolites significantly outperformed the model with only conventional risk factors including fasting glucose (discovery AUC: 0.884 vs. 0.691; validation 1: 0.945 vs. 0.731; validation 2: 0.987 vs. 0.717; all P < 0.01). At GW 16-19, similar results were observed (discovery AUC: 0.802 vs. 0.691, P < 0.01; validation 1: 0.826 vs. 0.780; P = 0.10).</p><p><strong>Conclusions: </strong>Dysbiosis in microbiome-derived metabolites is present early in pregnancy among individuals progressing to GDM.</p>","PeriodicalId":9188,"journal":{"name":"BMC Medicine","volume":"22 1","pages":"449"},"PeriodicalIF":7.0000,"publicationDate":"2024-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11470649/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s12916-024-03606-6","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MEDICINE, GENERAL & INTERNAL","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Pre-diagnostic disturbances in the microbiome-derived metabolome have been associated with an increased risk of diabetes in non-pregnant populations. However, the roles of microbiome-derived metabolites, the end-products of microbial metabolism, in gestational diabetes (GDM) remain understudied. We examined the prospective association of microbiome-derived metabolites in early to mid-pregnancy with GDM risk in a diverse population.
Methods: We conducted a prospective discovery and validation study, including a case-control sample of 91 GDM and 180 non-GDM individuals within the multi-racial/ethnic The Pregnancy Environment and Lifestyle Study (PETALS) as the discovery set, a random sample from the PETALS (42 GDM, 372 non-GDM) as validation set 1, and a case-control sample (35 GDM, 70 non-GDM) from the Gestational Weight Gain and Optimal Wellness randomized controlled trial as validation set 2. We measured untargeted fasting serum metabolomics at gestational weeks (GW) 10-13 and 16-19 by gas chromatography/time-of-flight mass spectrometry (TOF-MS), liquid chromatography (LC)/quadrupole TOF-MS, and hydrophilic interaction LC/quadrupole TOF-MS. GDM was diagnosed using the 3-h, 100-g oral glucose tolerance test according to the Carpenter-Coustan criteria around GW 24-28.
Results: Among 1362 annotated compounds, we identified 140 of gut microbiome metabolism origin. Multivariate enrichment analysis illustrated that carbocyclic acids and branched-chain amino acid clusters at GW 10-13 and the unsaturated fatty acids cluster at GW 16-19 were positively associated with GDM risk (FDR < 0.05). At GW 10-13, the prediction model that combined conventional risk factors and LASSO-selected microbiome-derived metabolites significantly outperformed the model with only conventional risk factors including fasting glucose (discovery AUC: 0.884 vs. 0.691; validation 1: 0.945 vs. 0.731; validation 2: 0.987 vs. 0.717; all P < 0.01). At GW 16-19, similar results were observed (discovery AUC: 0.802 vs. 0.691, P < 0.01; validation 1: 0.826 vs. 0.780; P = 0.10).
Conclusions: Dysbiosis in microbiome-derived metabolites is present early in pregnancy among individuals progressing to GDM.
期刊介绍:
BMC Medicine is an open access, transparent peer-reviewed general medical journal. It is the flagship journal of the BMC series and publishes outstanding and influential research in various areas including clinical practice, translational medicine, medical and health advances, public health, global health, policy, and general topics of interest to the biomedical and sociomedical professional communities. In addition to research articles, the journal also publishes stimulating debates, reviews, unique forum articles, and concise tutorials. All articles published in BMC Medicine are included in various databases such as Biological Abstracts, BIOSIS, CAS, Citebase, Current contents, DOAJ, Embase, MEDLINE, PubMed, Science Citation Index Expanded, OAIster, SCImago, Scopus, SOCOLAR, and Zetoc.