Marta Mauro-Lizcano, Filippo Di Pisa, Luis Larrea Murillo, Conor J Sugden, Federica Sotgia, Michael P Lisanti
{"title":"High mitochondrial DNA content is a key determinant of stemness, proliferation, cell migration, and cancer metastasis in vivo.","authors":"Marta Mauro-Lizcano, Filippo Di Pisa, Luis Larrea Murillo, Conor J Sugden, Federica Sotgia, Michael P Lisanti","doi":"10.1038/s41419-024-07103-9","DOIUrl":null,"url":null,"abstract":"<p><p>Here, we examined the potential role of mitochondrial DNA (mtDNA) levels in conveying aggressive phenotypes in cancer cells, using two widely-used breast cell lines as model systems (MCF7[ER+] and MDA-MB-231[ER-]). These human breast cancer cell lines were fractionated into mtDNA-high and mtDNA-low cell sub-populations by flow cytometry, using SYBR Gold as a vital probe to stain mitochondrial nucleoids in living cells. Enrichment of mtDNA-high and mtDNA-low cell sub-populations was independently validated, using a specific DNA-binding mAb probe (AC-30-10), and mitochondrial-based functional assays. As predicted, mtDNA-high MCF7 cells showed significant increases in mitochondrial mass, membrane potential, and superoxide production, as well as increased mitochondrial respiration and ATP production. Moreover, mtDNA-high MCF7 cells demonstrated increases in stemness features, such as anchorage-independent growth and CD44 levels, as well as drug-resistance to Gemcitabine and Tamoxifen. Proliferation rates were also significantly increased, with a dramatic shift towards the S- and G2/M-phases of the cell cycle; this was indeed confirmed by RNA-Seq analysis. Complementary results were obtained with MDA-MB-231 cells. More specifically, mtDNA-high MDA-MB-231 cells showed increases in stemness features and ATP production, as well as rapid cell cycle progression. Moreover, mtDNA-high MDA-MB-231 cells also exhibited increases in both cell migration and invasion, suggesting a role for mtDNA in distant metastasis. To test this hypothesis more directly, a preclinical in vivo model was utilized. For this purpose, MDA-MB-231 tumour cell grafts were treated with an established mtDNA synthesis inhibitor, namely Alovudine (3'-deoxy-3'-fluorothymidine). As expected, drug-induced depletion of mtDNA led to a shift from mitochondrial to glycolytic metabolism. Interestingly, Alovudine very effectively reduced the formation of spontaneous metastases by nearly 70%, but minimally inhibited tumour growth by approximately 20%. Taken together, these data suggest that high mtDNA content is a key driver of stemness, proliferation, and migration, as well as cancer cell metastasis.</p>","PeriodicalId":9734,"journal":{"name":"Cell Death & Disease","volume":null,"pages":null},"PeriodicalIF":8.1000,"publicationDate":"2024-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11470112/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Death & Disease","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s41419-024-07103-9","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Here, we examined the potential role of mitochondrial DNA (mtDNA) levels in conveying aggressive phenotypes in cancer cells, using two widely-used breast cell lines as model systems (MCF7[ER+] and MDA-MB-231[ER-]). These human breast cancer cell lines were fractionated into mtDNA-high and mtDNA-low cell sub-populations by flow cytometry, using SYBR Gold as a vital probe to stain mitochondrial nucleoids in living cells. Enrichment of mtDNA-high and mtDNA-low cell sub-populations was independently validated, using a specific DNA-binding mAb probe (AC-30-10), and mitochondrial-based functional assays. As predicted, mtDNA-high MCF7 cells showed significant increases in mitochondrial mass, membrane potential, and superoxide production, as well as increased mitochondrial respiration and ATP production. Moreover, mtDNA-high MCF7 cells demonstrated increases in stemness features, such as anchorage-independent growth and CD44 levels, as well as drug-resistance to Gemcitabine and Tamoxifen. Proliferation rates were also significantly increased, with a dramatic shift towards the S- and G2/M-phases of the cell cycle; this was indeed confirmed by RNA-Seq analysis. Complementary results were obtained with MDA-MB-231 cells. More specifically, mtDNA-high MDA-MB-231 cells showed increases in stemness features and ATP production, as well as rapid cell cycle progression. Moreover, mtDNA-high MDA-MB-231 cells also exhibited increases in both cell migration and invasion, suggesting a role for mtDNA in distant metastasis. To test this hypothesis more directly, a preclinical in vivo model was utilized. For this purpose, MDA-MB-231 tumour cell grafts were treated with an established mtDNA synthesis inhibitor, namely Alovudine (3'-deoxy-3'-fluorothymidine). As expected, drug-induced depletion of mtDNA led to a shift from mitochondrial to glycolytic metabolism. Interestingly, Alovudine very effectively reduced the formation of spontaneous metastases by nearly 70%, but minimally inhibited tumour growth by approximately 20%. Taken together, these data suggest that high mtDNA content is a key driver of stemness, proliferation, and migration, as well as cancer cell metastasis.
期刊介绍:
Brought to readers by the editorial team of Cell Death & Differentiation, Cell Death & Disease is an online peer-reviewed journal specializing in translational cell death research. It covers a wide range of topics in experimental and internal medicine, including cancer, immunity, neuroscience, and now cancer metabolism.
Cell Death & Disease seeks to encompass the breadth of translational implications of cell death, and topics of particular concentration will include, but are not limited to, the following:
Experimental medicine
Cancer
Immunity
Internal medicine
Neuroscience
Cancer metabolism