Endocrine disrupting effects on morphological synaptic plasticity

IF 6.5 1区 医学 Q1 ENDOCRINOLOGY & METABOLISM Frontiers in Neuroendocrinology Pub Date : 2024-10-01 DOI:10.1016/j.yfrne.2024.101157
Attila Zsarnovszky , Daiana Alymbaeva , Gergely Jocsak , Csaba Szabo , Boglárka Mária Schilling-Tóth , David Sandor Kiss
{"title":"Endocrine disrupting effects on morphological synaptic plasticity","authors":"Attila Zsarnovszky ,&nbsp;Daiana Alymbaeva ,&nbsp;Gergely Jocsak ,&nbsp;Csaba Szabo ,&nbsp;Boglárka Mária Schilling-Tóth ,&nbsp;David Sandor Kiss","doi":"10.1016/j.yfrne.2024.101157","DOIUrl":null,"url":null,"abstract":"<div><div>Neural regulation of the homeostasis depends on healthy synaptic function. Adaptation of synaptic functions to physiological needs manifests in various forms of synaptic plasticity (SP), regulated by the normal hormonal regulatory circuits. During the past several decades, the hormonal regulation of animal and human organisms have become targets of thousands of chemicals that have the potential to act as agonists or antagonists of the endogenous hormones. As the action mechanism of these endocrine disrupting chemicals (EDCs) came into the focus of research, a growing number of studies suggest that one of the regulatory avenues of hormones, the morphological form of SP, may well be a neural mechanism affected by EDCs. The present review discusses known and potential effects of some of the best known EDCs on morphological synaptic plasticity (MSP). We highlight molecular mechanisms altered by EDCs and indicate the growing need for more research in this area of neuroendocrinology.</div></div>","PeriodicalId":12469,"journal":{"name":"Frontiers in Neuroendocrinology","volume":null,"pages":null},"PeriodicalIF":6.5000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Neuroendocrinology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0091302224000372","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
引用次数: 0

Abstract

Neural regulation of the homeostasis depends on healthy synaptic function. Adaptation of synaptic functions to physiological needs manifests in various forms of synaptic plasticity (SP), regulated by the normal hormonal regulatory circuits. During the past several decades, the hormonal regulation of animal and human organisms have become targets of thousands of chemicals that have the potential to act as agonists or antagonists of the endogenous hormones. As the action mechanism of these endocrine disrupting chemicals (EDCs) came into the focus of research, a growing number of studies suggest that one of the regulatory avenues of hormones, the morphological form of SP, may well be a neural mechanism affected by EDCs. The present review discusses known and potential effects of some of the best known EDCs on morphological synaptic plasticity (MSP). We highlight molecular mechanisms altered by EDCs and indicate the growing need for more research in this area of neuroendocrinology.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
内分泌干扰对形态突触可塑性的影响
神经对平衡的调节依赖于健康的突触功能。突触功能对生理需求的适应表现为各种形式的突触可塑性(SP),由正常的激素调节回路调节。在过去几十年中,动物和人类生物体的激素调节已成为数千种化学物质的目标,这些化学物质有可能成为内源性激素的激动剂或拮抗剂。随着这些干扰内分泌的化学品(EDCs)的作用机制成为研究的焦点,越来越多的研究表明,激素的调节途径之一,即 SP 的形态形式,很可能是一种受 EDCs 影响的神经机制。本综述讨论了一些最著名的 EDC 对形态突触可塑性(MSP)的已知和潜在影响。我们强调了被 EDCs 改变的分子机制,并指出在这一神经内分泌学领域越来越需要开展更多的研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Frontiers in Neuroendocrinology
Frontiers in Neuroendocrinology 医学-内分泌学与代谢
CiteScore
13.30
自引率
6.80%
发文量
62
审稿时长
68 days
期刊介绍: Frontiers in Neuroendocrinology (FIN) publishes a wide range of informative articles including comprehensive reviews, systematic reviews, opinion pieces, and meta-analyses. While the majority of reviews are invited, we also embrace unsolicited reviews and meta-analyses, as well as proposals for thematic special issues, provided they meet our rigorous quality standards. In addition, we encourage authors to submit commentaries that concisely present fresh ideas or offer further analysis to delve deeper into the implications of an article published in our journal.
期刊最新文献
Effect of 5-alpha reductase inhibitors in animal models of Parkinson’s disease Endocrine disrupting effects on morphological synaptic plasticity Melatonin and brain barriers: The protection conferred by melatonin to the blood-brain barrier and blood-cerebrospinal fluid barrier Brain alteration of autoimmune thyroid disease: Neuropsychiatric impact, neuroimaging insights, and neurobiological implications Is melanin-concentrating hormone in the medial preoptic area a signal for the decline of maternal care in late postpartum?
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1