{"title":"A Novel CT-Based Fracture Risk Prediction Model for COPD Patients.","authors":"Heqi Yang, Yang Li, Hui Yang, Zhaojuan Shi, Qianqian Yao, Cheng Jia, Mingxin Song, Jian Qin","doi":"10.1016/j.acra.2024.08.039","DOIUrl":null,"url":null,"abstract":"<p><strong>Rationale and objectives: </strong>The aim of this study was to develop and validate a novel computed tomography (CT)-based fracture risk assessment model (FRCT) specifically tailored for patients suffering from chronic obstructive pulmonary disease (COPD).</p><p><strong>Methods: </strong>We conducted a retrospective analysis encompassing a cohort of 284 COPD patients, extracting data on demographics, clinical profiles, pulmonary function tests, and CT-based bone quantification metrics. The Boruta feature selection algorithm was employed to identify key variables for model construction, resulting in a user-friendly nomogram.</p><p><strong>Results: </strong>Our analysis revealed that 37.32% of the patients suffered fragility fractures post-follow-up. The FRCT model, integrating age, cancellous bone volume, average cancellous bone density, high-density lipoprotein levels, and prior fracture incidence, demonstrated superior predictive accuracy over the conventional fracture risk assessment tool (FRAX), with a C-index of 0.773 in the training group and 0.797 in the validation group. Calibration assessments via the Hosmer-Lemeshow test confirmed the model's excellent fit, and decision curve analysis underscored the FRCT model's substantial positive net benefit.</p><p><strong>Conclusion: </strong>The FRCT model, leveraging opportunistic CT screening, offers a highly accurate and personalized approach to fracture risk prediction in COPD patients, surpassing the capabilities of existing tools. This model is poised to become an indispensable asset for clinicians in managing osteoporotic fracture risks within the COPD population.</p>","PeriodicalId":50928,"journal":{"name":"Academic Radiology","volume":" ","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Academic Radiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.acra.2024.08.039","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0
Abstract
Rationale and objectives: The aim of this study was to develop and validate a novel computed tomography (CT)-based fracture risk assessment model (FRCT) specifically tailored for patients suffering from chronic obstructive pulmonary disease (COPD).
Methods: We conducted a retrospective analysis encompassing a cohort of 284 COPD patients, extracting data on demographics, clinical profiles, pulmonary function tests, and CT-based bone quantification metrics. The Boruta feature selection algorithm was employed to identify key variables for model construction, resulting in a user-friendly nomogram.
Results: Our analysis revealed that 37.32% of the patients suffered fragility fractures post-follow-up. The FRCT model, integrating age, cancellous bone volume, average cancellous bone density, high-density lipoprotein levels, and prior fracture incidence, demonstrated superior predictive accuracy over the conventional fracture risk assessment tool (FRAX), with a C-index of 0.773 in the training group and 0.797 in the validation group. Calibration assessments via the Hosmer-Lemeshow test confirmed the model's excellent fit, and decision curve analysis underscored the FRCT model's substantial positive net benefit.
Conclusion: The FRCT model, leveraging opportunistic CT screening, offers a highly accurate and personalized approach to fracture risk prediction in COPD patients, surpassing the capabilities of existing tools. This model is poised to become an indispensable asset for clinicians in managing osteoporotic fracture risks within the COPD population.
期刊介绍:
Academic Radiology publishes original reports of clinical and laboratory investigations in diagnostic imaging, the diagnostic use of radioactive isotopes, computed tomography, positron emission tomography, magnetic resonance imaging, ultrasound, digital subtraction angiography, image-guided interventions and related techniques. It also includes brief technical reports describing original observations, techniques, and instrumental developments; state-of-the-art reports on clinical issues, new technology and other topics of current medical importance; meta-analyses; scientific studies and opinions on radiologic education; and letters to the Editor.