Reliable deep learning in anomalous diffusion against out-of-distribution dynamics

IF 12 Q1 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Nature computational science Pub Date : 2024-10-11 DOI:10.1038/s43588-024-00703-7
Xiaochen Feng, Hao Sha, Yongbing Zhang, Yaoquan Su, Shuai Liu, Yuan Jiang, Shangguo Hou, Sanyang Han, Xiangyang Ji
{"title":"Reliable deep learning in anomalous diffusion against out-of-distribution dynamics","authors":"Xiaochen Feng, Hao Sha, Yongbing Zhang, Yaoquan Su, Shuai Liu, Yuan Jiang, Shangguo Hou, Sanyang Han, Xiangyang Ji","doi":"10.1038/s43588-024-00703-7","DOIUrl":null,"url":null,"abstract":"Anomalous diffusion plays a crucial rule in understanding molecular-level dynamics by offering valuable insights into molecular interactions, mobility states and the physical properties of systems across both biological and materials sciences. Deep-learning techniques have recently outperformed conventional statistical methods in anomalous diffusion recognition. However, deep-learning networks are typically trained by data with limited distribution, which inevitably fail to recognize unknown diffusion models and misinterpret dynamics when confronted with out-of-distribution (OOD) scenarios. In this work, we present a general framework for evaluating deep-learning-based OOD dynamics-detection methods. We further develop a baseline approach that achieves robust OOD dynamics detection as well as accurate recognition of in-distribution anomalous diffusion. We demonstrate that this method enables a reliable characterization of complex behaviors across a wide range of experimentally diverse systems, including nicotinic acetylcholine receptors in membranes, fluorescent beads in dextran solutions and silver nanoparticles undergoing active endocytosis. This work introduces a framework that enhances deep learning for anomalous diffusion, enabling reliable detection of out-of-distribution dynamics and characterization of complex behaviors across diverse systems.","PeriodicalId":74246,"journal":{"name":"Nature computational science","volume":"4 10","pages":"761-772"},"PeriodicalIF":12.0000,"publicationDate":"2024-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature computational science","FirstCategoryId":"1085","ListUrlMain":"https://www.nature.com/articles/s43588-024-00703-7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

Anomalous diffusion plays a crucial rule in understanding molecular-level dynamics by offering valuable insights into molecular interactions, mobility states and the physical properties of systems across both biological and materials sciences. Deep-learning techniques have recently outperformed conventional statistical methods in anomalous diffusion recognition. However, deep-learning networks are typically trained by data with limited distribution, which inevitably fail to recognize unknown diffusion models and misinterpret dynamics when confronted with out-of-distribution (OOD) scenarios. In this work, we present a general framework for evaluating deep-learning-based OOD dynamics-detection methods. We further develop a baseline approach that achieves robust OOD dynamics detection as well as accurate recognition of in-distribution anomalous diffusion. We demonstrate that this method enables a reliable characterization of complex behaviors across a wide range of experimentally diverse systems, including nicotinic acetylcholine receptors in membranes, fluorescent beads in dextran solutions and silver nanoparticles undergoing active endocytosis. This work introduces a framework that enhances deep learning for anomalous diffusion, enabling reliable detection of out-of-distribution dynamics and characterization of complex behaviors across diverse systems.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
在异常扩散中进行可靠的深度学习,对抗分布外动态。
反常扩散在理解分子级动力学方面起着至关重要的作用,它为了解分子相互作用、流动状态以及整个生物和材料科学系统的物理性质提供了宝贵的见解。最近,深度学习技术在异常扩散识别方面的表现优于传统统计方法。然而,深度学习网络通常是通过有限分布的数据进行训练的,这就不可避免地无法识别未知的扩散模型,并在面对分布外(OOD)场景时误解动态。在这项工作中,我们提出了一个通用框架,用于评估基于深度学习的 OOD 动态检测方法。我们进一步开发了一种基线方法,可实现稳健的 OOD 动态检测以及分布内异常扩散的准确识别。我们证明,这种方法能够可靠地描述各种实验系统的复杂行为,包括膜中的烟碱乙酰胆碱受体、葡聚糖溶液中的荧光珠以及正在进行主动内吞的银纳米粒子。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
11.70
自引率
0.00%
发文量
0
期刊最新文献
Harnessing the power of DNA for computing Collective deliberation driven by AI Harnessing deep learning to build optimized ligands MassiveFold: unveiling AlphaFold’s hidden potential with optimized and parallelized massive sampling A deep learning approach for rational ligand generation with toxicity control via reactive building blocks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1