{"title":"Ensuring Miners’ Safety in Underground Mines Through Edge Computing: Real-Time PPE Compliance Analysis Based on Pose Estimation","authors":"Mohamed Imam;Karim Baïna;Youness Tabii;El Mostafa Ressami;Youssef Adlaoui;Intissar Benzakour;François Bourzeix;El Hassan Abdelwahed","doi":"10.1109/ACCESS.2024.3470558","DOIUrl":null,"url":null,"abstract":"Safety in underground mining is critically challenged by environmental conditions and the need for rigorous adherence to safety protocols. Draa Sfar, the deepest mine in Morocco, presents extreme conditions that test the effectiveness of Personal Protective Equipment (PPE) compliance. This study addresses the gaps in real-time safety monitoring and compliance in such challenging environments. The primary objective of this research is to enhance PPE compliance detection in underground mines using advanced computer vision techniques. The study aims to develop a system that not only detects PPE but also ensures its proper use through pose estimation. The study involved collecting and annotating a unique dataset from the Draa Sfar mine, characterized by its harsh environmental conditions. Pose estimation was performed using the newly developed You Only Live Once (YOLO) Pose v8 algorithm, tailored for miners in underground settings. For PPE detection—specifically helmets, safety vests, gloves, and boots—we employed and compared several models including YOLO v8, v9, v10, Real-Time Detection Transformer (RT-DETR), and YOLO World. PPE compliance was then assessed by integrating pose estimation keypoints to filter out false detections effectively. The integrated approach successfully identified and verified the use of PPE with high accuracy. Comparative analysis showed that newer versions of YOLO alongside RT-DETR provided substantial improvements in detection rates under varied lighting and spatial conditions prevalent in underground mines. The findings demonstrate that combining pose estimation with advanced object detection frameworks significantly enhances PPE compliance monitoring in underground mines. This dual approach reduces the risk of false positives and ensures a more reliable safety system. By improving the accuracy and reliability of safety equipment detection in one of the most challenging mining environments, this research contributes to reducing occupational hazards and enhancing miner safety. The implications extend to other high-risk industries where environmental conditions complicate safety monitoring.","PeriodicalId":13079,"journal":{"name":"IEEE Access","volume":"12 ","pages":"145721-145739"},"PeriodicalIF":3.4000,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10704570","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Access","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10704570/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Safety in underground mining is critically challenged by environmental conditions and the need for rigorous adherence to safety protocols. Draa Sfar, the deepest mine in Morocco, presents extreme conditions that test the effectiveness of Personal Protective Equipment (PPE) compliance. This study addresses the gaps in real-time safety monitoring and compliance in such challenging environments. The primary objective of this research is to enhance PPE compliance detection in underground mines using advanced computer vision techniques. The study aims to develop a system that not only detects PPE but also ensures its proper use through pose estimation. The study involved collecting and annotating a unique dataset from the Draa Sfar mine, characterized by its harsh environmental conditions. Pose estimation was performed using the newly developed You Only Live Once (YOLO) Pose v8 algorithm, tailored for miners in underground settings. For PPE detection—specifically helmets, safety vests, gloves, and boots—we employed and compared several models including YOLO v8, v9, v10, Real-Time Detection Transformer (RT-DETR), and YOLO World. PPE compliance was then assessed by integrating pose estimation keypoints to filter out false detections effectively. The integrated approach successfully identified and verified the use of PPE with high accuracy. Comparative analysis showed that newer versions of YOLO alongside RT-DETR provided substantial improvements in detection rates under varied lighting and spatial conditions prevalent in underground mines. The findings demonstrate that combining pose estimation with advanced object detection frameworks significantly enhances PPE compliance monitoring in underground mines. This dual approach reduces the risk of false positives and ensures a more reliable safety system. By improving the accuracy and reliability of safety equipment detection in one of the most challenging mining environments, this research contributes to reducing occupational hazards and enhancing miner safety. The implications extend to other high-risk industries where environmental conditions complicate safety monitoring.
IEEE AccessCOMPUTER SCIENCE, INFORMATION SYSTEMSENGIN-ENGINEERING, ELECTRICAL & ELECTRONIC
CiteScore
9.80
自引率
7.70%
发文量
6673
审稿时长
6 weeks
期刊介绍:
IEEE Access® is a multidisciplinary, open access (OA), applications-oriented, all-electronic archival journal that continuously presents the results of original research or development across all of IEEE''s fields of interest.
IEEE Access will publish articles that are of high interest to readers, original, technically correct, and clearly presented. Supported by author publication charges (APC), its hallmarks are a rapid peer review and publication process with open access to all readers. Unlike IEEE''s traditional Transactions or Journals, reviews are "binary", in that reviewers will either Accept or Reject an article in the form it is submitted in order to achieve rapid turnaround. Especially encouraged are submissions on:
Multidisciplinary topics, or applications-oriented articles and negative results that do not fit within the scope of IEEE''s traditional journals.
Practical articles discussing new experiments or measurement techniques, interesting solutions to engineering.
Development of new or improved fabrication or manufacturing techniques.
Reviews or survey articles of new or evolving fields oriented to assist others in understanding the new area.