{"title":"Approximating Energy Market Clearing and Bidding With Model-Based Reinforcement Learning","authors":"Thomas Wolgast;Astrid Nieße","doi":"10.1109/ACCESS.2024.3472480","DOIUrl":null,"url":null,"abstract":"Energy market rules should incentivize market participants to behave in a market and grid conform way. However, they can also provide incentives for undesired and unexpected strategies if the market design is flawed. MARL is a promising new approach to predicting the expected profit-maximizing behavior of energy market participants in simulation. However, reinforcement learning requires many interactions with the system to converge, and the power system environment often consists of extensive computations, e.g., optimal power flow (OPF) calculation for market clearing. To tackle this complexity, we provide a model of the energy market to a basic multi-agent reinforcement learning (MARL) algorithm in the form of a learned OPF approximation and explicit market rules. The learned OPF surrogate model makes an explicit solving of the OPF completely unnecessary. Our experiments demonstrate that the model additionally reduces training time by about one order of magnitude but at the cost of a slightly worse performance. Potential applications of our method are market design, more realistic modeling of market participants, and analysis of manipulative behavior. Source code available at \n<uri>https://github.com/Digitalized-Energy-Systems/marl_clearing_and_bidding</uri>\n.","PeriodicalId":13079,"journal":{"name":"IEEE Access","volume":"12 ","pages":"145106-145117"},"PeriodicalIF":3.4000,"publicationDate":"2024-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10703033","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Access","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10703033/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Energy market rules should incentivize market participants to behave in a market and grid conform way. However, they can also provide incentives for undesired and unexpected strategies if the market design is flawed. MARL is a promising new approach to predicting the expected profit-maximizing behavior of energy market participants in simulation. However, reinforcement learning requires many interactions with the system to converge, and the power system environment often consists of extensive computations, e.g., optimal power flow (OPF) calculation for market clearing. To tackle this complexity, we provide a model of the energy market to a basic multi-agent reinforcement learning (MARL) algorithm in the form of a learned OPF approximation and explicit market rules. The learned OPF surrogate model makes an explicit solving of the OPF completely unnecessary. Our experiments demonstrate that the model additionally reduces training time by about one order of magnitude but at the cost of a slightly worse performance. Potential applications of our method are market design, more realistic modeling of market participants, and analysis of manipulative behavior. Source code available at
https://github.com/Digitalized-Energy-Systems/marl_clearing_and_bidding
.
IEEE AccessCOMPUTER SCIENCE, INFORMATION SYSTEMSENGIN-ENGINEERING, ELECTRICAL & ELECTRONIC
CiteScore
9.80
自引率
7.70%
发文量
6673
审稿时长
6 weeks
期刊介绍:
IEEE Access® is a multidisciplinary, open access (OA), applications-oriented, all-electronic archival journal that continuously presents the results of original research or development across all of IEEE''s fields of interest.
IEEE Access will publish articles that are of high interest to readers, original, technically correct, and clearly presented. Supported by author publication charges (APC), its hallmarks are a rapid peer review and publication process with open access to all readers. Unlike IEEE''s traditional Transactions or Journals, reviews are "binary", in that reviewers will either Accept or Reject an article in the form it is submitted in order to achieve rapid turnaround. Especially encouraged are submissions on:
Multidisciplinary topics, or applications-oriented articles and negative results that do not fit within the scope of IEEE''s traditional journals.
Practical articles discussing new experiments or measurement techniques, interesting solutions to engineering.
Development of new or improved fabrication or manufacturing techniques.
Reviews or survey articles of new or evolving fields oriented to assist others in understanding the new area.