Yeo Kyung Kang, Sun Jin Lee, Sunghun Eom, Byeong Geun Kim, Chan-Cuk Hwang and Myung-Gil Kim
{"title":"Recent progress of inorganic photoresists for next-generation EUV lithography","authors":"Yeo Kyung Kang, Sun Jin Lee, Sunghun Eom, Byeong Geun Kim, Chan-Cuk Hwang and Myung-Gil Kim","doi":"10.1039/D4TC02671C","DOIUrl":null,"url":null,"abstract":"<p >The continuous scaling down of semiconductor devices has significantly benefited consumers by enhancing the device performance, portability, power efficiency, and affordability. Recently, chip makers have embraced extreme ultraviolet (EUV) lithography to spearhead the market leadership of sub-10 nm patterning. This surge in EUV adoption has sparked extensive research on EUV photoresists, focusing on materials with various metallic elements to improve the EUV sensitivity and advance nanolithography. Previous studies explored the determinants of sensitivity and pattern formation. Recently, interest has shifted toward dry photoresists and innovative techniques, such as resistless lithography. This review summarizes the research on inorganic EUV photoresists and outlines strategies to boost the lithographic performance and tackle future challenges.</p>","PeriodicalId":5,"journal":{"name":"ACS Applied Materials & Interfaces","volume":null,"pages":null},"PeriodicalIF":8.3000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Materials & Interfaces","FirstCategoryId":"1","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/tc/d4tc02671c","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The continuous scaling down of semiconductor devices has significantly benefited consumers by enhancing the device performance, portability, power efficiency, and affordability. Recently, chip makers have embraced extreme ultraviolet (EUV) lithography to spearhead the market leadership of sub-10 nm patterning. This surge in EUV adoption has sparked extensive research on EUV photoresists, focusing on materials with various metallic elements to improve the EUV sensitivity and advance nanolithography. Previous studies explored the determinants of sensitivity and pattern formation. Recently, interest has shifted toward dry photoresists and innovative techniques, such as resistless lithography. This review summarizes the research on inorganic EUV photoresists and outlines strategies to boost the lithographic performance and tackle future challenges.
期刊介绍:
ACS Applied Materials & Interfaces is a leading interdisciplinary journal that brings together chemists, engineers, physicists, and biologists to explore the development and utilization of newly-discovered materials and interfacial processes for specific applications. Our journal has experienced remarkable growth since its establishment in 2009, both in terms of the number of articles published and the impact of the research showcased. We are proud to foster a truly global community, with the majority of published articles originating from outside the United States, reflecting the rapid growth of applied research worldwide.